ASA=T%=10330+)

ENGINEEPING PAPERS, VOLUME 6

Uncla
277602

SOFTWARE ENGINEERING LABORATORY SERIES SEL-88-002

COLLECTED SOFTWARE
ENGINEERING PAPERS: VOLUME Vi

NOVEMBER 1988

NNAS

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

I

]

I

FOR RD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administra-
tion/Goddard Space Flight Center (NASA/GSFC) and created for
the purpose of investigating the effectiveness of software
engineering technologies when applied to the development of
applications software. The SEL was created in 1977 and has
three primary organizational members:

NASA/GSFC (Systems Development Branch)
The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Systems Development
Operation)

The goals of the SEL are (1) to understand the software
develobment process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on
this process; and (3) to identify and then to apply success-
ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software
Engineering Laboratory Series, a continuing series of
reports that includes this document. The papers contained
in this document appeared previously as indicated in each
section.

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552

NASA/GSFC

Greenbelt, Maryland 20771

iii
5207
PRECEDING PAGE BLANK NoOT FILMED

di U [T,

il

L]

il

{

TABLE NTENT

i — r i e e e e e e e e e e e e e e e 11
Section 2 - Software Measurement and Technology
Studies. . . + v 4 4 v v e e e e e e e e . 2-1
"The Effectiveness of Software Prototyping: A
Case Study,"” M. V. Zelkowitz 2-2

"Measuring Software Design Complexity,"” D. N.
Card and W. W, Agresti . . .« ¢« « ¢+ ¢ ¢« + o « « + « 2-11

"Quantitative Assessment of Maintenance: An
Industrial Case Study," H. D. Rombach and

v. R. BaSili . . . - - L] . . . '] 2_24
"Resource Utilization During Software

Development,” M. V. Zelkowitz. 2-35
ion 3 - remen vironmen ies. 3-1

"Generating Customized Software Engineering

Information Bases from Software Process and

Product Specifications,"™ L. Mark and

H. D. Rombach. ¢ ¢ ¢« v ¢ + ¢ ¢« & & « + « 3=2

"Software Process and Product Specifications:
A Basis for Generating Customized SE Information
Bases," H. D. Rombach and L. Mark. 3-11

"The TAME Project: Towards Improvement-Oriented
Software Environments," V. R. Basili and

Ho D. RombaCh. L] . .] . 3 3—21

"Validating the TAME Resource Data Model,"

D. R. Jeffery and V. R. Basili 3-37
Section 4 - Ada Technology Studies 4-1

"Experiences in the Impiementation of a Large

Ada Project," S. Godfrey and C. Brophy 4-2

"General Object-Oriented Software Development
with Ada: A Life Cycle Approach,” E. Seidewitz. . 4-9

"Lessohs»Learned in the Implementation Phase
of a Large Ada Project," C. E. Brophy, .
S. Godfrey, W. W. Agresti, and V. R. Basili. . . . 4-24

v’
- | PRECEDING PAGE BLANK NOT FILMED

AB F NTENT Cont'

ion 4 nt'

"Object-Oriented Programming in Smalltalk and
Ada," E. Seidewitz

5207

vi

{

Tt o w1 ai di Yo mi W i a) [TTI—] 1l b

SECTION 1 - INTRODUCTION

[)

e

\

1
A

¢

o |
. i

L

4

L

L
N

f
i

[

Fy

¢
4l‘

1l

ECTI — INTR D TI

-
This document is a collection of technical papers produced
by participants in the Software Engineering Laboratory (SEL)
during the period June 1, 1987, through January 1, 1989.

The purpose of the document is to make available, in one
reference, some results of SEL research that originally ap-
peared in a number of different forums. This is the sixth
such volume of technical papers produced by the SEL. “KTf}
though these papers cover-several topics related to soft&ai
englneerlng, they do” not encompass the entire scope Qf SEL &
act1v1t1es and interests. Additional information qbgut theA

,SEL and its research efforts may be obtalned from the sources

,,,,,, R

For the convenience of this presentation, the twelve papers
contained here are grouped into three major categories:

(1" software Measurement and Technology Studies;

°
® :z Measurement Environment Studies, - ==
® -, Ada Technology Studies

The first category presents experimental research and eval-
uation of software measurement and technology; the second
presents studies on software environments pertaining to
measurement. The last category represents Ada technology
and includes research, development, and measurement studies.

The SEL is actively working to increase its understandlng
and to improve the ‘software _development process at Goddard

Space Fllght Center (GSFC) Future effortg;w111 be docu-
mented in additional volumes of the 1 f

neering Papers and other SEL publications.

5207

& |

mwu

l

‘ﬂ\ \

il

U

| (T NI Wi e o iy oA 4

i

. SECTION 2 - SOFTWARE MEASUREMENT AND

TECHNOLOGY STUDIES

=~

i

|

4

il

|

U,

¢

{

<i

I

Hl

ECTION 2 - FTWARE MEA EMENT AND HNOT, IE

The technical papers included in this section were originally

prepared as indicated. below.

5207

"The Effectiveness of Software Prototyping: A Case
Study," M. V. Zelkowitz, Pr in f the 26th

Annual Technical Symposium of the Washington, D.C.
h r of th M, June 1987

"Measuring Software Design Complexity," D. N. Card

and W. W, Agresti, The Journal of Systems and Soft-
ware, June 1988

"Quantitative Assessment of Maintenance: An Indus-
trial Case Study," H. D. Rombach and V. R. Basili,
Pr i m the Conference ftware Mainte-
nance, September 1987

"Resource Utilization During Software Development,"
M. V. Zelkowitz, Th n m n ft-

ware, 1988

=

THE EFFECTIVENESS OF SOFTWARE PROTOTYPING: o
- A Case Study -
Marvin V. Zelkowitz ==
Department of Computer Science - -
University of Maryland
College Park, Maryland 20742
4
from NASA/GSFC, Computer Sciences Corporation, and o
ABSTRACT the University of Maryland, for research on improving =
. both the software product and the process for building -
This paper discusses resource ulilization over the life such software [SEL 82]. The Software Engineering
cycle of software development, and discusses the role Laboratory was established in 1076 to investigate the —
that the current "waterfall model™ plays in U'f actual effectiveness of sofiware engineering techniques for -
software life cycle. The effects of protolyping are developing ground support soltware for NASA [BAS 78]. 3
. . —
measured with respect to the life cycle model

Software production in the NASA environment was
analyzed to measure these differences. The dala col-
lected from thirteen different projects and one proto-
type develop t were collected by the Software En-
gincering Laboratory at NASA Goddard Space Flight
Center and analyzed for similarities and differences.
The results indicate that the waterfall model s not
very realistic in practice, and that a protolype develop-

A recent prototyping experiment was conducted and data
were collected which compare this prototype with the
more traditional way to build software. The paper con-
cludes with comments on the role of prototyping as a
software development technique. N

The software development process is typically
product-driven, and can be divided into six major life
cycle activities, each associated with a specific “end pro-

ment follows a similar life cycle as a ;rod‘uctl’on duct” [WAS 83, ZEL 78);] |

system--although, for this prototype, issues like ayat{m . ,)

design and the user interface took precedence over is- 1 R"l?"’"""‘“ phase and the publication of a

sues such a8 correciness and robustness of the result- requirements document, = -

ing system. (2) Design phase and the creation of a design docu- =
ment. i i -

KEYWORDS: Life cycle, Measurement, Prototyping,
Resource utilization, Waterfall chart

1. Introduction

As technology impacts the way industry builds
software, there is increasing interest in understanding the
software development model and In measuring both the

(3) Code and Unit Test phase and the generation of
the source code library.

(4) System integration” and tesling phase and the
fulfillment of the test plan.

(5) Acceptance test phase and completion of the
acceptance test plan.

(8) Operation and Meintenance phase ard the

1)

) VHIIN

j——

process and product. New workstation technology, new delivery of the completed system.

languages (e.g., Ada, requirements and speciﬁcgsion In order to present consistent data across a large number

languages) as well as new techniques (e.g., prototyping, f projects, this paper only focuses on the interval = i
pseudocode) are impacting how software is built which beiween design and acceptance test and jnvolves the —
further impacts how management needs to address these yopyq) implementation of the system by the developer ~

concerns in controlling and monitoring a software
development.

In this paper, data are first presented which analyze
several fairly large software projects from NASA God-
dard Space Flight Center (GSFC) and put the current
“waterfall” model in perspective. Data about software
costs, productivity, reliability, modularity and other fac-

group.

In this paper, we will refer to the term activily as
the work required to complete a specific task. For exam-
ple, the coding activity refers to all work done in gen-
erating the source code for a project, the design activity
refers to building the program design, etc. On the other
hand, the term phase will refer to that period of time

N

tors are collected by the Software Engineering Labora: when & certain activity is supposed to occur, For exam-

tory {SEL), a research group consisting of individuals ple, the Coding Phase will refer to that period of time
© 1987 Association for Computing Machinery, Inc. = :

R = - -z' :
Permission to copy withoul fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
wercisl advantage, the ACM copyright notice and the title of the —
Publication and its date appear, and notice Is given that copying Is = =
%) permission of the Association for Computing Machinery. To 1=
copy otberwise, o to republish, requires s fee and/or specfic per- 261 ANNUAL TECHNICAL SympOSIUM .
wisslon. WasHingToN D.C. CHapTER OF ACM

7 Gaithersburg, MDeJune 11, 1987 .
2-2

5207] .

il |

{

(|

1

i

y

during a software development when coding activities are
supposed to occur. It is closely qelaled to management-
defined milestone dates for a project., But during this
period, other activities may also occur.

REQUIREMENTS
]
DESIGN
e
CODE
_
INTEGRATION
—]
ACCEPTANCE TEST
A
OPERATION
—_

Lifecycle Calendar Time

>
Figure 1. Typical Life Cycle

The waterfall model makes the assumption that all
activity of a certain type occurs during the phase of that
same name and phases do not overlap. Once a phase
ends, then the next phase begins. Thus all requirements
for a project occur during the Requirements Phase; all
design activity occurs durlng the Design Phase. Once a
project has a design review and enters the Coding Phase,
then all activity is Coding. Since many companies keep
data based upon hours worked by calendar date, this
model is very easy to track. However, as Figure 1 shows,
activities overlap and do not lie in separate phases. We
will give more data on this later.

2. The waterfall chart is all wet

In the NASA/GSFC environment that we studied,
the software life cycle follows a fairly standard set of
activities [SEL 81):

The requirements activity involves translating the
functional specification consisting of physical attributes
about the spacecraft to be launched into requirements for
a soltware system that is to be built.

The design activity can be divided into two subac-
tivities: the preliminary design activity and the detailed
design activity. During preliminary design, the major
subsystems are specified, input-output interfaces and
implementation strategies are developed. During detailed
design, the system architecture is extended to the subroy-

tine and procedure level. Data structures and formal
models of the system are defined. These models include
procedural descriptions of the system, dataflow descrip-
tions, complete description of all user input, system oyt
put, and input-output files, operational procedures, fupe.
tional and procedural descriptions of each module, ang
complete description of all internal interfaces bet

modules. ween

The Coding and Unit Test activity involves the
‘t.ranslation of the detailed design into a source program -
In some appropriate programming language (usually
FORTRAN). Each programmer will unit test each
module for apparént correctness.

The System Integration and Test activity validates
that the completed system produced by the coding and
unit test activity meets its specifications. Each module,
a8 it is completed, is integrated into the growing system
and integration test is performed to make sure that the
entire package executes as expected. Functional testing
of end-to-end system capabilities is performed according
to the system test plan developed as part of the require-
ments activity.

In the Acceptance Test activity, the development
team provides assistance to the acceptance test team,
which checks that the system meets its requirements.

Operation and Maintenance activities begin after
acceptance testing when the system becomes operational.
For flight dynamics software at NASA, these activities
are not significant to the overall cost. Most software pro-
duced is highly reliable. In addition, the flight dynamies
software is usually not mission eritical in that a failure of
the software does not mean spacecraft failure but simply
that the program has to be rerun. In addition, many of
these programs {i.e., spacecraft) have limited lifetimes of
six months to about three years.

Table 1 presents the raw data on the fourteen pro-
Jects analyzed in this paper. The thirteen numbered pro-
Jects are all fairly large flight dynamics programs, rang-
ing in size from 15,500 lines of FORTRAN code to 89,513
lines of FORTRAN, with an average size of 57,800 lines
of FORTRAN per system. The average work on these
projects was 89.0 staf months; thus, all represent
significant eflort. The last project listed in Table 1 -
FDAS - represents a prototype development and will be
discussed in more detail later.

In most organizations, phase data are collected
weekly so that they are the usual reporting mechanism.
However, in the SEL, activity data are also collected.
The data that are collected consist of nine possible activi-
ties for each component (i.e., source program module)
worked on for that week. In this paper, these will be
grouped as Design activities, Coding activities (code
preparation and unit testing), Integration testing, Accep-
tance testing and Other. Specific review meetings, such
as design reviews, will be grouped with their appropriate
activity (e.g., a design review is a design activity, a code
walkthrough is a coding activity, ete.). This allows us to
look at both phase and activity utilization.

2671 ANNUAL TECHNICAL SYMPOSIUM
WasHingTon D.C. CHapTER OF ACM
Gaithersburg, MDeJune 11, 1987 8

5207

OIECT SIZE AND STAFF-%7 + JIH
PROJECT | SIZE (LINES | TOTAL LrFORT STAFF-
NUMBER OF CODE) HOUR®* MONTHS
1 15,500 17,718 1165
2 50,011 12,588 828
3 81,178 17,039 112.1
4 26,844 10,946 72.0
5 25,731 1,514 100
[] 87,325 10,475 1284
17 68,200 17,997 1184
8 + + +
9 $5.337 18,262 100.4
10 715,420 5,792 381
11 89,513 15,122 9.5
12 75,383 14,508 95.4
13 85,380 14,309 84.1
Average 57,850 13,522 89.0
FDAS 33,9687 14,150 93.1

+ - Raw data not available in data base
¢ _ All technical effort including programmer and mnnqemem. time

Table 1. Project Sise and Staf-month Effort

The results of this can be briefly summarized by
Table 2. According to this, in NASA, 22% of a project’s
effort is during the design phase, while 40% is during
coding. Integration testing takes 16% while all other
activities take 12%. (Remember that requirements data
sre not being collected here. We are simply reporting the
percentage of design. coding, and testing activities. A
significant requirements activity does occur.)

D;sign Code | Int. Test. | Other
By phase 22 49 18 12
By activity 25 30 15 29

Table 2. Activities performed in each phue (by %)

However, actual activities differ somewhat from sim-
ply looking at eflort spent between somewhat arbitrary
calendar dates set up months in advance. By looking at
all design effort across all phases of the projects, design
activity is actually 25% of the total effort rather than the
22% listed sbove. Coding Is s more reasonable 30%
which means that the coding phase includes many other
sctivities. “Other” incressed from 12% to 290%, and
include many time-consuming tasks that are not
accounted for by the usual life cycle. (Here, Other
includes acceptance testing, as well as activities that take
8 significant effort but are usually not separately
identifiable using the standard model. These activities

include meetings, training, travel, documentation, and

other various activities assigned to the project.)

The situation is actually more complex than shown
in Table 2. Although using Phase Date shows that total
design eflort differs by only 3% from the design phase
eflort, the distribution of design activity throughout the
project is not reflected in the table. These data are
presented in Table 3.

5207

Design | Code | Int. Test | Accept. Test
50 20 20 2

Table 3. Design Activity During Life Cycle Phases (by %)

As Table 3 shows, only 50% of all design work
occurs during the Design Phase and just under one third
of the total design activity occurs during the coding
period. Over one fifth (20%+2%) of all design occurs
during testing when the system is “supposed” to be
finished. . S

As to coding eflort, Table 4 shows that while s
major part, or 70% of the coding eflort, does occur dur-
ing the Coding Phase, almost one quarter (18%+7%)
occurs during the testing periods. As expected, only a
small amount ‘of coding (7%) occurs during the design
phase; however, it does indicate that some coding does
begin on parts of the system while other parts are stili
under design. -

Design | Code | Int, Test | Accept. Test
7 70 18 7

Table 4. Coding Act.wny during Life Cycle Phases (by %)

Slmllarly, stle 5 shows that significant integration
testing activities {about 34%) occur before the integra-
tion testing period. Opce modules have been unit tested,
programmers begin to piece them together to build larger
subsystems.

Design | Code | Int. Test | Accept. Test
0 34 83 3

Table 5. Integration Activity during Life Cycle Phases

3. Prototyping

As can be seen, programmers readily flow from one
activity of a project 1o another--more like a series of
rapids and not as a discrete set of waterfalls. Any model
that does not reflect this cannot hope to accurately por-
tray software development. Boehm has proposed a spiral
model [BOE 86] of software development which takes
some of this into account. In addition, the concept of
prototyping has been proposed as an alternative concept.
The remainder of thxs _paper Wl" address the prototyping
issue. Do

The current model of soi't.ware development s
becoming even more complex. As new techniques are
developed, how do they fit into the life cycle? For exam-
ple, pseudocode is often written to describe a design.
This pseudocode is often iterated In greater detail to
evolve into the source program. However, when does
pseudocode stop being design and when does it become a
source program? Prototyping is another technique which

doesn’t fit into this model well, In a prototype, the

26tH AnnuaL TECHNICAL SYmPOSIUM
WashingTon D.C. CHaPTER OF ACM

Gaithersburg, MDeJune 11, 1

987

L &

L Bl

4, |

=
-

3

It
]
]

f

i

{11

J

S

developer builds some operational aspect of the system
and then evaluates the prototype with respect to some
criteria. Where does this coding and testing fit? What
activity is this in the overall life cycle?

At NASA, s prototype was developed to investigate
implementation strategies for a new product. [n this sec-
tion, the role of the prototype will be described and the
resulting data collected from building the prototype will
be compared with the historical life cycle dats presented
in the preceding section. -

A prototype Flight Dynamics Analysis System
(FDAS) was implemented by NASA/GSFC. Data were
collected during the development of the system. For typ-
ical flight dynamics software, which NASA has consider-
able experience in building, prototyping would be of lim-
ited benefit due to significant knowledge of how previous
systems were built. However, in this case, FDAS was to
be a source code maintenance system to manage other
source code libraries. It would enable NASA analysts to
test new spacecraft orbit models by providing & human-
engineered common interface which could be used to
invoke other flight dynamics packages. Since it was
unlike previous NASA projects, and since NASA person-
nel had limited knowledge of exactly how to build this
system, FDAS was a good candidate for prototyping.

The goal of the prototype was to understand the
problem domain better. As such, an early decision was
made to build the system with every expectation of
throwing it away. If part of the source program could be
transferred to the final system, then that would be
viewed as an unexpected bonus. After the prototype was
buiit, it would be evaluated and from this experience the
requirements for a production version of FDAS would be
developed. Therefore, the basic idea of the prototype
was to learn, and it fits into the life cycle as part of the
requirements phase of Figure 2.

This definition of prototyping diflers from others
that view a prototype as a first release of a system. The
goal was clearly to be able to understand the problem
and not to generate useable source programs. In another
study [BOE 84|, prototyping was viewed as an iterative
process converging on the final product.

We viewed the prototype as part of the requirements
analysis of the problem. However, since the prototype
was to execute, it itsell had a full development life cycle.
As Table 1 previously showed, since FDAS was almost
34,000 lines of code and took about 93 staff months to
complete, it was a rather large project by itself.

FDAS was to be an interactive system. That meant
that the user interface was crucial, Because of this, it was
determined that the prototype should emphasize that
aspect of system design.

The prototype was built in FORTRAN for a DEC
VAX 11/780. In hindsight it is not clear that such an
implementation was the wisest. However, at the start,
the problem did not seem that complex, and personnel
experience and available bardware and software lent

Requirements

Design
Requirements
Code & Test
(Prototype System) System Test

Acceptance Test

DESIGN

CODE & TEST

SYSTEM TEST

ACCEPTANCE TEST

Figure 2. Prototype as part of Software Life Cycle

themselves to a FORTRAN implementation. Since the
goal was to give the user a taste of what services the
system would provide, s screen simulation applications
package (e.g., Rapid/Use [WAS 86]), a very high level
simulation, or a 4th generation language might have been
adequate.

The use of FORTRAN, however, did have some
benefits. For one, it gave the developers experience in
using FORTRAN in a type of text-processing application
for which they had little previous experience. One of the
reasons that the NASA group generally has high produc-
tivity is that they have had considerable experience in its
application area. By building the prototype in FOR-
TRAN, they were using Brooks' second system property
where he advises “plan to throw one away” [BRO 75]. By
building a first prototype in FORTRAN, mistakes would
undoubtedly be made. By planning on discarding the
prototype rather than patching it to correct errors, the
ultimate FDAS system should be more reliable and better
structured — even if it did not turn out to be cheaper.
This by itself is a valuable property, although it is not
clear that it is a measurable one on most projects.

T

261H ANNUAL TECHNICAL SYmPOSIUM
WasHINGTON D.C. CHapTER OF ACM
Gaithersburg, MDeJune 11, 1987 10

5207

A more important aspect of 8 FORTRAN imple-
mentation (at least with respect to this paper) is t.hat.' the
FDAS prototype was a “typical” FORTRAN project.
Hence its life cycle characteristics and the data that were
collected could be compared with many other projects in
the NASA database. This would not have been possible if
some other mechanism (e.g., simulation package of some
sort) were used.

In the next section, the prototype will be evaluated.
However, here are some of cur general conclusions. The
handling of requirements differed from a production sys-
tem; FDAS requirements were incomplete when design
began. Unlike previous projects, they were 'not stated
precisely because aspects of the system were still an open
subject during development [ZEL 84]; even identifying
the potential user community and its impact on the user
interface and its eflect on “assumed computer experience”
was still being considered. Dates for completion of each
phase were more flexible than in the historical data and
milestones were less rigid than in a production develop-
ment. During other phases, requirements were generally
modifiable which in turn affected all activities in each
phase.

More time was spent in design, than is usual for a
typical project. Unlike other NASA projects, an exten-
sive review process took place almost weekly as design
decisions were made and altered. The coding and testing
efforts had no formal review. Although status meetings
were held almost weekly, the developers placed less
emphasis on testing than with a production system; and
since the prototype had a very limited lifetime, features
that seemed well understood but cumbersonme to imple-
ment were deleted from the requirements. According to
the final report, coding took less time than in previous
projects but testing did consume the same amount of
effort. Very little eflort was spent on acceptance testing,
since the effective life of the prototype was short.

4. Evaluation of Prototype

In » manner similar to the 13 other NASA projects,
lhf FDAS project was analyzed by phases and activities
using data in the SEL database.

4.1. Phase Analysis

Data collection based on phases is shown in Table 8.
The eflort expended for design, coding, and testing were
'Ontx!arable. but notice that acceptance testing was only
L3 of the prototype effort, but 12.7% in the historical

DEVELOPMENT EFFORT BY PHASE DATE
(13 Projects vs Prototype FDAS)
PROJECT | DESIGN | CODE | INTEG. | ACC.TST

NUMBER (%) (%) | ACT(%) (%)
1 08 e 165 243

2 16.2 48.4 19.3 18.2

3 218 479 174 129

4 as9 305 248 0.1

5 18.2 888 13.0 00

] 163 486 10.9 243

7 19.0 50.4 148 137

8 229 48.4 13.0 158

¢ 228 68.3 8.1 1.1

10 244 448 20.2 108

11 22.7 39.4 21.4 ‘185

12 18.9 53.1 109 191

13 28.2 435 201 82
Average 220 49.2 18.2 12.7
FDAS 270 45.3 26.4 13

Table 8. Software Development Effort by Phase

4.2. Activity Analysis

In the previous subsection, we viewed effort by
phase date. Table 7 displays the actual activities of
design, coding and integration test effort independent of
phase. In this case the results differ. Usually during the
design phase, coding and testing activities begins on some
modules, and in the code and unit test phase, additional
design activity continues. Integration testing begins as
soon as coding and unit testing of a component com-
pletes. Similarly, during the testing phase, any errors
that were uncovered might require substantial redesign
and recoding. Comparing with Table 8, we discover that
most NASA developments have additional design effort
later in the life cycle to raise total design effort from 22%
t0 25.86%. In the FDAS case, total design dropped from
27% to 25%, meaning that activities oifier than design
occurred in the design phase. In both cases, activities
other than coding occur during the coding phase since
actual coding activity was only 30.5%% and 17.6%
respectively, as opposed to the 45+% of effort of the cod-
ing phase (Table 8).

Comparing FDAS with the 13 other developments,
design effort is comparable at 25%, but the code and unit
test effort and the integration test effort were different.

f

Nl

-

Na

i

{1l

|

=

H

o el i sl e o g 221 e by of e b algry o
. Ong as the system worked for evaluation, it PNt : : .
‘»’ sdequate, In addition, integration testing took 10% zgztvgirhgzsilégefcﬁe;n;:d c]]me?rauon testing only. This =
Tiore T_ﬂ"‘" {26% compared 1o 16%) in the prototype. ¢ clearly. -
3 ‘e this w h » e
the eor::\le t'hl's “f“ mostly due to “schedule sl'l;zpage 5 No formal review was performed on the prototype
delyyed \‘:x:t)':luv.)h:en‘dhe prototype chused activities to be during coding and unit testing. Because of the decision
) to delete hard-to-build but undersiood features that did o
267K ANnuaL TECKHNICAL SYMpOSIUM —_ .
WasHingTOn D.C. CrarTer oF ACM w
. 1 Gaithersburg, MDeJune 11, 1387
=
2-6

5207

EVELOPMENT EFFORT BY ACTIVITY IN ALL PHASES
° Lo {13 Projects vs Prototype FDAS)
DESIGN CODE INTEG OTHER
v ACT (%) ACT (%) ACT (%) ACT(%
174 184 99 583
; 301 94 208 97
3 203 203 - 193 342
4 73 287 80 380
5 e IS 94 41
] 149 28 240 m2
T 2012 %9 143 kX
L] 110 139 93 858
9 33 a5 189 64
10 w2 73 81 i84
11 23 3o 172 75
12 27 “s 40 59
13 328 83 156 156
Averige 256 08 150 _289
FDrA!S_ 250 1768 281 23

Table 7. Soltwars Development Efort by Activily

not effect the FDAS evaluation, coding was quite
straightforward. Most of the easy coding was completed
in a rather short time, and the more difficult coding
aspects were simply not implemented. As Table 8 indi-
cates, at 26% coding, FDAS had the lowest relative cod-
ing effort of any of the 14 measured projects. The next
lowest was 30.8% and the average over all 13 was 42.2%.
In addition, while in most projects the design and
integration testing efforts were less than the coding
activity, in FDAS both were almost 50% greater than for
coding (about 37% for each compared to 26% for cod-
ing).

PER CENT EFFORT IN EACH PHASE
{13 Projects vs totype F!

PROJECT | DESIGN | CODELUNIT | INTEG.
NUM ACT(%) ACT(%) ACT(%)

1 399 S 226

2 333 43.7 230

3 38.9 0.8 203

4 44.0 463 08.7

S 0.8 48.8 12.3

[} 2468 359 395

7 3 428 238

8 322 40.7 271

10 4.8 45.7 07.%

11 378 40.1 221

12 25.2 49.4 255

13 38.0 430 18.4

Average 38.2 422 216

FDAS 389 26.0 37.1

Table 8. Relative Activity

This apparent short circuiting of coding, however,
appeared to have a detrimental effect on testing, which
took a relative 37.1% of eflort as opposed to 21.6% on
other projects. Only one other project (8) wok as much
eflort (39%) and from Table 1 project 6 was the most
costly, where you might expect an excesslve need for test-
ing.

26814 ANNUAL TECHNICAL SYMPOSIUM

WaswHinaToN D.C. CHarTeER OF ACM

Gaithersburg, MDeJune 11, 1987

5207

12

Based on the original productivity rate of 1.4 source
lines of code (SLOC) per hour on most NASA projecty
[BAS 81|, FDAS with a size of 33,087 SLOC had 4
productivity rate of 2.4 SLOC per hour. (Note: the aver-
age project size of 57,800 SLOC of Table 1 cannot simply
be divided by the average effort of 13,552 hours since
most NASA projects reuse some code from previous sys-
tems. Table 1 is total system size, and the productivity
rate is for new lines of code.)

4.2.1. Design Effort

A true picture of development can be achieved by
investigating actual activity during each phase,
Although design i3 supposed to occur principally during
the design phase, for both the 13 older projects and the
FDAS prototype a comparable one half of the total
design effort occurred during the design phase, and equal
amounts were distributed through the rest of the life
cycle (Table 9). This repeats Table 3 in more detail.
Only 2% of the design of FDAS occurred during the
acceptance lest phase in the prototype, principally
because the FDAS acceptance testing phase was so short
and the few errors that were found did not get
redesigned and corrected. For the historical data, the
8.4% of design occurring during scceptance testing
represents errors found in testing that required source
code to be redesigned.

DESIGN ACTIVITY EFFORT IN EACH PHASE
113 Projects_vs Protatype FDAS)
PROJE! DESIGN CODE INTEG. ACC.TST.
NUM PHASE(%) | PHASE(%) TEST(%) | PHASE(%)
1 4138 339 10.0 143
2 53.8 31.2 9.2 80
3 33.3 371 197 9.9
4 453 326 220 0.4
5 174 "69.1 13.5 0.0
[] 58.9 30.7 4.3 8.2
7 8.0 153 68 141
8 28.1 386 71 8.0
9 a1s 38.2 0.0 0.0
10 578 72 7.0 8.0
1 587 13.7 18.87 10.9
12 589 328 5.9 2.4
13 60.5 24.7 11.9 29
Aversge 49.2 34.1 10.3 8.4
FDAS 49.8 239 19.8 17

Table 9. Design Activity Effort

4.2.2. Code & Unit Test Effort

The code & unit test activities in the prototype,
however, represent a departure from the older projects
{Table 10). In most developments, about 7% of the cod-
ing is completed during design (although it varied from
0% to 22% in the 13 other projects). Implementation
often begins as some components become completely
specified. However, with FDAS, due to its greater yncer-

H otil the development team o
tainty, o coding occurred u] the eodine b INTEGRATION ACTIVITY EFFORT IN EACH PHASE =]
ally understood the design, i.e., until the ing phase >
really d {13 Projects va_Prototype FDAS)
began. For most projects, 70% of the to?al code an <]
unit test effort is in the coding phase, but in the proto- PROJECT | DESIGN | CODEZUNIT | INTEG. | Acc.TsT. o
type almost 96% of the effort was during coding. Codx'ng NUM PHASE(% PHASE(%) | TEST(%)_| PHASE(%) ==
often extends through scceptance testing, 'but. with -
FDAS’s relatively light acceptance test, few critical errors 1 0.0 178 274 54.7
were found so little effort was spent in recoding during : :(; ;:: ;‘l): f;;
test. Coding and testing need to be :u:ned out on the i 210 303 07 00 —
full system for every change or modification of the 5 254 710 08 00 =
design, but in the prototype it was not necessary to code s 1.0 09 176 05 =y
. 7 03 54.1 2.3 19.2
the new design. 3 29 338 19.2 “.1
9 0.0 88.4 20.2 4 =
CODE & TEST ACTIVITY EFFORT IN EACH PHASE 10 00 23.1 415 355 _
{13 Projects v rotype FDAS 11 0.0 384 35.1 28.5 W
12 0.1 327 22.4 4“8
PROJECT DESIGN CODE INTEG. ACC.TST. 13 13 405 28.9 20.2
NUM PHASE(%) | PHASE(%) | TEST(%) PHASE(%) -
Average 4.7 43.4 26.1 258 _
1 1.4 788" iL3 [B} FDAS 0.0 345 82.7. 2.8 ;
2 00 728 197 75 Table 11. ing Test Activity Effort
3 222 582 18 98 ¢ 11 Integrating Test Activity
4 184 585 25.1 0.1
212 687 10.1 0.0 L e
: 0.5 773 11.3 109 of the task. The :ccggtggce test activity is low for the ?
7 13 739 156 9.2 similar reason that the prototype system had few users of
8 147 547 210 8.7 short duration and therefore no detailed tests. On the 13
o 8: ;;; 2;; 2: collected projects, the Other activities are distributed
:? 22 705 201 72 more uniformly during all phases, including the accep- =
12 03 748 33 166 tance test where there is & need to test before actually -
13 48 636 2.9 19 turning the system to the user.
Average 8.0 70.3 15.9 8.9 =
FDAS 0.0 95.9 4.1 0.0

OTHER ACTIVITIES EFFORT IN EACH PHASE
{13 Projects vs Pototype FDAS)

PROJECT | DESIGN | CODE&TST INTEG. | ACC.TST.
NUM PHASE(%) | PHASE(%) TEST(%) | PHASE(%)

Table 10. Code & Unit Test Activity Effort

4.2.3. Integration Test Effort . 213 1.2 181 265 %’ :
Integration test effort is distributed through all 2 0.0 0.1 26.4 848

pbases in the eollected projects with more effort (43%) 3 17 418 168 13.7

during the code & unit phase than In either the integra- ; ::g :‘;; 23.6 0.0 -

tion phase (28%) or the acceptance test phase (26%) o 182 s 2:30 2:“.,) =

(Table 11). In general, almost 50% of all integration test- 7 14.4 516 145 195 od

ing oecurs during design and coding phases. In FDAS,] 28.5 47 14 144

this effort was delayed with about two-thirds of all ® 159 85.5 18.7 0.0

Integration activities in the integration phase. This was lo 124 302 3.9 2.5

:] i ; It 214 s22 18 27. =
due to delaying the integration until more pieces of the 12 a3 “s w L: -
System were completed. 13 425 30.0 12.7 14.9
Average 231 41.2 178 17.9 —
4.2.4. Other Actlvity Effort FDAS 45.1 388 15.7 0.3
The Other category consists of activities such as

travel, completion of the data collection forms, meetings,
or training. While these activities are often ignored in
most life cycle studies, the costs are significant. Typi-
cally, about 20% of activities are in this category and of
the 13 measured projects, “other” consumed more thap
one-third of the effort on 6 of them (Table 7). FDAS
used a comparable 329 “other”. As seen in Table 12,
the Prototype devoted more eflort to the design phase,
mainly for meeting, traveling, and training due to the

Table 12. Other Activities Effort

5. Concluslons - . - - .. -

In this paper we have collected data on many
software projects developed at NASA/GSFC and com-
pared them with a new prototype development. By using
data from the SEL database, it appears clear that the

4 . to ¢ software development process does not follow the water- -
extensive unknown quality of the design at the beginning ra)) life cycle. It also appears that the prototype develop-
26TH ANNUAL TECHNICAL SYMPOSIUM -

WasHINGTON D.C. CHaPTER 0F ACM
13 Gaithersburg, MDsJune 11, 1987

5207

{

ment follows a similar life cycle pattern as other software
projects. Although a single data point (the prototype)
does not give definitive answers, it does give some trends
that are of interest.

Both spproaches have similar software life cycles,
but the effort distributed over each phase differs. The
coding in the prototype was more ad hoc, therefore test-
ing became more involved. Integration testing was
barder in the prototype because of the false assumption
that reliability was not a central issue. The production
developments devote more effort in coding than in testing
(Table 7).

While not inexpensive, the prototype appears to be
successful. Several design decisions turned out to be
partially faulty when the prototype was tested. The
human computer interface has been redesigned.

In fact, after completion of the prototype, several
screen simulation systems were used to model a user
interface, and s more hierarchical menu model was
developed. Without the FDAS experience, NASA might
bave implemented a system where users had no real
experience uptil the large Implementation would be too
far along to change adequately.

The underlying execution model of FDAS became
better understood. As a source code control system, the
separation of the FDAS code and the user's flight dynam-
ies application code became clearer. Most user programs
would be FORTRAN (at least initially); however, other
languages (e.g., Pascal, Ads) would be used in the future,
while it would not matter to the user in what language
FDAS was itsell written.

FDAS included s prototype preprocessor to add
abstract data types to FORTRAN. This preprocessor
was initially tied directly to the FDAS implementation.
It is npow somewhat independent to allow for other
preprocessors later. The FORTRAN preprocessor, call
OPAL, for Object Programming Applications Language
[CSC 88], is a more rational extension of FORTRAN
with data structures useful for flight dynamies applica-
tions, such as vectors, matrices, and quaternions. The
decision was also made to move away from FORTRAN,
and the system itself is being implemented in Ada,
although it will initially process FORTRAN application
code.

A new production FDAS implementation would
svoid many potential pitfalls discovered via the proto-
type. Currently the production version of FDAS is under
development, and its design has benefited greatly from
the earlier development. We will have to wait for com-
pletion before fully evaluating this process. It is quite
clear, however, that FDAS will be a much better product
that if the prototype had not been built.

Prototyping probably increases the cost of the sys-
tem, but it greatly increases its quality. It gives a flavor
to the end user of what the system can do and how it
can perform the task, especially in a nonfamiliar environ-
meant. It provides the developers a “second system” effect
for perfecting a design.

2671 ANNUAL TECHNICAL SYMPOSIUM
WasHINGTON D.C. CHapTER OF ACM
Gaithersburg, MDeJunae 11, 1987

5207

14

8. Acknowledgement

This work was partially supported by graat NAGS-
3688 from NASA Goddard Space Flight Center to the
University of Maryland. Judin Sukri provided most of
the analysis of the data used in this report. We also wish
to acknowledge the bhelp of Frank McGarry of
NASA/GSFC for his ald in collecting the data used here
and for their interpretation.

7. References

[BAS 78]
Basili, V. R. and Zelkowitz M. V. “Analyzing
Medium-Scale Software Development™ 3rd Interna.
tional Conference on Software Engineering, Atlanta,
pp. 116-223, (May 1978).

[BAS 81]
Basili, V. R. and Freburger, K., “Programming
Measurement and Estimation in the Software
Engineering Laboratory” The Journal of System 8§
Software, Vol. 2, pp. 47-57, (1981},

[BOE 84]
Boehm B., Gray, T. and T. See Waldt, Prototyping
vs. specifying: a multiproject experience, 7th Inter-
national Conference on Softwrae Engineering,
orlando, FLA, March 1984, pp. 473-484.

[BOE 86}
Boehm B., A spiral model of software development
and enhancement, ACM Softwere Engineering Notes
11, 4, August 1986, pp. 22-42,

|IBRO 75]
Brooks, F., The Mythical Man Month Addison Wes-

ley, 1975.

[CSC 86])
Applications Software under the Flight dynamics
analysis system (FDAS), Computer Sciences Cor-
poration, CSC/SD-86/68024, November, 1988.

SEL 81
‘ Mc]Garry, F. E. and Page, G. and et al., “Standard

" A God-
Approach to Software Development”, NAS
daprd Space Flight Center, Greenbelt, MD, (Sep-

tember 1981).

SEL 82
[Mc]Garry, F. E. and Church, V. and Carl, D. and et

al., “Guide to Data Collection™, NASA Goddard
Space Flight Center, Greenbelt, Md, (August 1982).

[WAS 83]
Wasserman, A., “Software Engineering Eaviron-
ment”, Advances in Computer, Vol. 22, pp. 110-150,
(1983).

[WAS 86 o |
Wasserman A, T B 1 Pircher and D. T
Shewmake, Bulldmg reliable interactive information
systeis, IEEE Transactions on Software Engineer- B
ing, Vol. SE-12, No. 1, pp. 147-156 (January, 1986). 7]

1]

|ZEL 78]
N Zelkowitz, M.V., “Perspective on Software Engineer-
ing", ACM Computmg Surveya Vol. 10, NO. 2, pp.
198-218, (June 19078). .

4

[ZEL 84]
Zelkowitz, M. V. and Sukri, J., “Technique for Sub-
Jective Evaluation of Prot.otypmg Design”, Proceed-
ing of Ninth Annual Software Engmurmg
Workshop, NASA Goddard Space Flight Center,
Greenbelt, MD, (December 1084).

0

o

]l

‘2614 ANNUAL TECHNICAL SYMPOSIUM
WasHinaTon D.C. CHAPTER OF ACM
15 Gaithersburg, MDeJune 11, 1987

5207

Measuring Software Design Complexity

D. N. Card and W. W. Agresti

Computer Sciences Corporation, Silver Spring, Maryland

Architectural design complexity derives from two
sources: structural (or intermoduie) complexity and local
(or intramodule) complexity. These complexity attributes
can be defined in terms of functions of the number of /O
variables and fanout of the modules comprising the
design. A complexity indicator based on these mea-
sures showed good agreement with a subjective assess-
ment of design quality but even better agreement with
an objective measure of software error rate. Although
based on a study of only eight medium-scale scientific
projects, the data strongly support the value of the
proposed complexity measure in this context. Further-
more, graphic representations of the software designs
demonstrate structural differences corresponding to the
results of the numerical complexity analysis. The pro-
posed complexity indicator seems likely to be a useful
tool for evaluating design quality before committing the
design to code.

1. INTRODUCTION

Typically, design is the earliest stage of software
development at which the pending software system is
fully specified and in which the system structure is
clearly defined. Design usually proceeds in two steps—
architectural, then detailed design. This study only
considers the former. Throughout the following discus-
sion, *‘design’’ will refer to architectural design unless
otherwise indicated. Assessment of the quality of a
software design rates high in the priorities of software
developers and managers. However, the multitude of
potentially conflicting design objectives, methods, and
representations, as well as a lack of appropriate data,
have hindered the development of effective measures of
software design quality.

One quality attribute, complexity, has been studied
extensively. Early investigations [[, 2] focused on the
internal organization of individual programs or subpro-
grams rather than on the structure of software systems

Address correspondence to David N. Card, Computer Sciences
Corporation, 8728 Colesville Road, Silver Spring, MD 20910.

“The Journal of Systems and Software 8, 185-197 (1988)
© {988 Elsevier Science Publishing Co.. Inc.

5207

composed of large numbers of subprograms (or mod-
ules). More recently, complexity studies have attempted
to consider software systems (3, 4]. Many of these
approaches require extensive analysis (usually special
tools) to compute values of the complexity measures
proposed. Moreover, few of these measures can be
computed at design time. The objective of this study was
to define some ‘‘simple’” complexity measures that
could easily be derived during early design.

The initial investigation considered many existing
models of software complexity but did not find any of
them suitable for this application because 1) necessary
data were difficult to extract or compute, 2) required
information was not available during architectural de-
sign, and/or 3) our data data did not support the model.
For example, all of these reservations apply to software
science [1]; see Card and Agresti [28].

This paper explains a new approach to measuring
software design complexity that considers the structure
of the overal! system as well as the complexity incorpo-
rated in individual components. The measures derive
from a simple model of the software design process.
Analysis of data from eight medium-scale scientific
software projects showed that the complexity measures
defined in this report provide a good estimate of the
overall development error rate, as well as agreeing with
a subjective assessment of design quality. Furthermore,
differences in design complexity indicated by the com-
plexity measures also demonstrated themselves in design
profile graphs.

This analysis relied on data collected by the Software
Engineering Laboratory (SEL) from eight spacecraft
flight dynamics projects. The SEL is a research program
sponsored by the National Aeronautics and Space
Administration [5]. It is supported by Computer Sci-
ences Corporation and the University of Maryland. The
objectives of the SEL are to measure the process of
software development in the flight dynamics environ-
ment at Goddard Space Flight Center, identify technol-
ogy improvements, and trunsfer this technology to flight
dynamics software practitioners.

185

. 0164-1212/88/83.50

186

2. NATURE OF DESIGN COMPLEXITY

Architectural design is the process of partitioning the
required functionality and data of a software system into
parts that work together to achieve the full mission of the
system. Thus, architectdral design complexity can be
viewed as having two components: 1) the complexity
contained within each pant (or module) defined by the
design, and 2) the complexity of the relationships among
the parts (modules). In the following discussion, we will
refer to design parts as modules, in the sense that a
module is the smallest independently compliable unit of
code [6]. Each design part will eventually be imple-
mented as a software module. In the FORTRAN en-
vironment of the SEL, modules correspond to subrou-
tines,

Many different approaches or methods achieve the
same design result: a high-level architectural design and
an integrated set of individual module designs. The
detailed design (e.g., PDL) developed to implement the
work assigned to a module provides another source of
complexity that is not analyzed here. It is not the intent
of this paper to address whether specific design methods
result in lower-complexity (or better) design products.
Rather, its objective is to demonstrate a complexity
measurement approach that can be applied to a wide
range of such products, regardless of how they were
produced. The authors recognize that correct design
practice is essential to achieving good designs. Gener-
ally, this report shows that the conditions that result in
lower values of the complexity measures are consistent
with accepted design practices. -

Of course, any complete design must include nonmo-
dules such as files and COMMON blocks (in FOR-
TRAN). Furthermore, partitioning is not the only design
process. This proposed model oniy attempts to capture a
subset of all the possible factors in complexity. As
Curtis [7] points out, complexity depends on the
perspective from which an object or system is viewed.
This paper examines software complexity with respect to
the difficulty of producing the designed system (for
example, the difficulty of changing the implemented
system is not considered). The following discussion is
intended 1o illustrate the line of reasoning followed in
developing the model and measures. It should not be
construed as a mathematical proof that this model is a
necessary and sufficient explanation of complexity.

2.1 A Design Model

One common approach to design is functional decompo-
sition (the basis of structured design [6]). It results in a
hierarchical network of units (or modules). For any
module, workload consists of input and output items

5207

D. N. Card and W. W. Agresti

WORKLOAD
(INPUT/OUTPUT DATA)

PROCESS

WORK PERFORMED PERFORMING

(LOCAL COMPLEXITY) (PROCEDURAL
COMPLEXITY)

CONNECTIONS TO WORK DEFERRED
(STRUCTURAL COMPLEXITY)

Figure. 1. Decomposition model of software design.

(data couples) to be processed. At each level of
decomposition, the designer must decide whether to
implement the indicated functionality (perform the
work) in the current module or defer some of it to a
lower level by invoking one or more other modules (via
control couples). Deferring functionality decreases the
local (intramodule) complexity but increases the struc-
tural (intermodule) complexity (see Fig.). Similar
decisions also must be made when following other
design approaches (e.g., object oriented {8]).

The internal design of a module (how the work is
performed) may contribute procedural complexity, but
that is outside the scope of this paper. Of course, many
early studies of software complexity (e.g., [2]) focused
on process construction. The distinction made here
between local and procedural complexity parallels the
distinction between the specification and the body of an
Ada* package. o '

Thus, architectural complexity is a function of the
work performed (within modules) as well as the connec-
tions among the work parts {modules). Effective design
minimizes work as well as connections. This argument
leads to the following formulation for the total complex-
ity of a software design:

C~=5~+L~ m
where
C~ = total design complexity

S~
L~

structural (intermodule) complexity
local (intramodule) complexity

* Ada is a registered trademark of the U.S. Government (Ada Joint
Program Office).

2-12

1w &l 4« 4

- 4

il

1D

0 |

\F\
| Wil

4y

g g W g0 €

it

Measuring Software Design Complexity

That is, the total complexity of a design of given

complexity C~ can be defined as the sum of intermo-
dule plus intramodule complexity. In this simple model,
all complexity resides in one or the other of these two
componcnts; hence, they are additive. These complexity
components correspond to the structured design con-
cepts of module strength:{or cohesion) and coupling
defined by Stephens et al. [6].

2.2 Relative Complexity

Because projects (and designs) vary greatly in terms of
magnitude, a measure of relative complexity ultimately
may prove more useful than total complexity. Dividing
by the number of modules defined in the design
normalizes these complexity measures for size so that
designs of different magnitudes may be compared:

C=S+L @
where

C = C~/n (relative design complexity)

§ =S~/n '

L =L~/n

n = number of modules in system

Although individual modules may vary greatly in size in
terms of lines of source code, the module, as it is used
here, is the unit of design. Hence it is the appropriate
normalization factor. The rest of this discussion will
concern relative complexity.

3. DEFINITION OF COMPLEXITY MEASURES

The next sections define measures for each of the two
components of relative complexity just identified in
Equation 2. The measures incorporate counts in the
design characteristics (calls, variables, and modules)
identified in the model. (Table | summarizes some
design measures from the modules studied in this
analysis). The following sections also discuss methods
and consequences of minimizing complexity as defined
by this model.

Table 1. Design Measures Summary

Minimum Mean Maximum
Module size 1 66 603
Fanin 1 1.3 16
Fanout 0 2.8 27
I/O variables 1 24 . 237
Level 2 6.1 11

Note: Based on 1,142 newly developed modules.

5207

187

3.1 Structural Complexity

Structural complexity derives from the relationships
among the modules of a system. The most basic
relationship is that a module may call or be called by
another module. The structurally simplest system con-
sists of a single module. For more complex systems,
structural complexity is the sum of the contributions of
the component modules to structural complexity. These
potential contributions are occurrences of fanin and
fanout as noted by Henry and Kafura [9}, as well as by
Belady and Evangelisti [3]. (Fanin is the count of calls to
a given module. Fanout is the count of calls from a given
module.)

In the SEL data analyzed (see Table 1), multiple fanin
generally confined itself to modules that were simple
mathematical functions reused throughout the system.
Consequently, fanin did not prove to be an important
complexity discriminator. On the other hand, fanout
proved to be highly sensitive, as indicated in a previous
study [10]. Counting fanout only also ensures that each
connection is counted exactly once. Note that lower
fanout indicates less coupling in the sense that there are
fewer couples (without regard to their strength [11] or
type [6]).

According to this model, a module with a fanout of
zero contributes nothing to structural complexity. How-
ever, the distribution of fanout within a system also
affects complexity. The interconnection matrix repre-
sentation of partitioning used by Belady and Evangelisti
[3] suggests that complexity increases as the square of .
connections (fanout). All descendents of a given module
are connected to each other by their common parent.
Then, for a fixed total fanout, a system in which
invocations are concentrated in a few modules is more
complex than one in which invocations are more evenly
distributed. These considerations lead to the following
formulation for structural complexity:

IS}

§=— . 3)
n -

where

hY
Ji

n

structural (intermodule) complexity

u"vv

fanout of module

number of modules in system

This quantity is the average squared deviation of actual
fanout from the simplest structure (zero fanout). Henry
and Kafura’'s term *‘(fanin * fanout) *= 2"’ [9] reduces to
fanout-squared when fanin is assumed equal to one (the
nominal case). Similarly Belady and Evangelisti’s mea-
sure of complexity [3] is a function of the number of
nodes (modules) and edges (fanout) in a system or
cluster (partition).

2-13

188

The fanout count defined here does not include calls to
system or standard utility routines, but does include calls
to modules reused from other application programs. A
reused module must be examined by the designer to
determine its appropriateness—as opposed to standard
utilities that arc well understood by developers.

v
-

3.2 Local Complexity

The internal complexity of a module is a function of
the amount of work it must perform. The workload
consists of data items that are input to or output from
higher or parallel modules. This definition is consistent
with Halstead’s concept [1] of the minimal representa-
tion of a program as a function (single operator) with an
associated sct of 1/0 variables (operands). This work-
load measure parallels the idea of actual data bindings as
used by Hutchens and Basili [11].

Then, to the extent that functionality (work) is
deferred to lower levels, the internal complexity of a
module is reduced. Averaging the internal complexities
of a systems’s component modules produces its local
complexity. Most guidelines for decomposition suggest
decomposing into units of equal functionality. Assum-
ing, for simplicity, that the workload of a module is
evenly divided among itself and subordinate modules
leads to the following formulation of complexity:

T —
L= !,‘+l o - (4)

n

where

L
v; = /O variables in module **i’’
Ji

n

local (intramodule) complexity

fanout of module *‘i"’

number of new modules in system

The ** + 17" term represents the subject module's share
of the workload (incidentally, it prevents the divide-by-
zero condition from arising when a module has no
fanout). 1/0 variables include distinct arguments in the
calling sequence (an array counts as one variable) as
well as referenced COMMON variables. An earlier
study [10] indicates that the presence of unreferenced
COMMON variables does not affect module quality.
Data item complexity is not considered here (only newly
developed modules enter into this computation).

Henry and Kafura [9] used the count of source lines of
code to represent intramodule complexity. However, as
used in Henry and Kafura [9], no matter how large the
module, its complexity would be zero if it had no fanout.
Basili et al. [12) showed source lines of code (size) to be
highly correlated (r = 0.79) with the number of 1/O

5207

D. N. Card and W. W. Agresti

variables (operands). Another earlier study [13] shows
that high-strength modules {6] tend to be small. Conse-
quently, the local complexity measure may be an
indicator of average module strength (or cohesion [6]).

3.3 Minimizing Complexnty

Design complexity, as defined in n the preceding sections,
can be minimized by minimizing its structural and local
components. However, these components are not inde-
pendent. Both measures include fanout. Minimizing
structural complexity requires minimizing thke fanout
from each module. For a given number of both modules
and total fanout, structural complexity is minimized
when fanout is evenly distributed across all modules
(except terminal nodes, of course). On the other hand,
local complexity can be minimized by maximizing
fanout or minimizing variable repetition.

Repetition occurs whenever a data item appears in
more than one module as a calling sequence argument or
referenced common variable. Internal uses (including
CALLSs to other modules) do not count as repetition. In
general, minimizing local complexity will produce
smaller modules (in terms of executable statements), but
is also may increase structural complexity disproportion-
ately. For a given module with a fixed number of I/0

variables, the fanout that contributes minimum complex- -

ity can be determined as follows:
c=240/(f+1)
where

¢ = contribution of given module to total complexity
per Equations 2, 3, and 4 :

then

de/df=2f-v/(f+1)?

at minimum’

0=2f-v/(f+1)}

then

YT ®)

Figure 2 shows a plot of Equation 5 as a step function (to
reflect the discrete natures of v and f). It identifies the
fanout that minimizes complexity for possible counts of
/O variables. For example, in the range from about 100
to 200 1/O variables, complexity is minimized with a
fanout of 3. Since very few modules include as many as
200 I/O variables, the plot indicates that the commonly
accepted range of values for fanout (upto 7 + 2) is
much too large. Curtis (7] suggests that the popularity of
this bound derives from a misunderstanding of certain
psychological studies. This implication is consistent with

2-14

|

4|

4|

45 = & N

{

Measuring Software Design Complexity

400 -

300 -

Pp-=h

1/0 VARIABLES (V)

100 o

189

N

———

an earlier study [I0]. Furthermore, Constantine [6}
observes that most programs can be decomposed effec-
tively into a common structure of three parts: input,
process, and output. Larger fanouts may indicate too
rapid decomposition. This result suggests than a fanout
of one is a reasonable value for modules with few [/O
variables.

In addition to the selection of an appropriate fanout,
design complexity can also be minimized by reducing
variable repetition, i.e., by not including variables
where they are not needed. Rigorous application of the
principle of information hiding [14] should reduce
variable repetition and, hence, local complexity.

Figure 3 shows two design segments of equal struc-
tural complexity: The number and distribution of fanouts
are identical. Each data couple represents a repetition of
the variable ** X", Figure 3a traces this variable through
a design following strict topdown decomposition rules.
‘X"’ appears in the higher level modules (A, B, D)
as well as in the lower level modules (C, E). Figure 3b
shows an alternative design with a horizontal transfer of
data that bypasses the higher level modules (for the case
in which modules.A, B, and D do not actually use “‘X"").
The local complexity of the intermediate modules (B, D)
in the strict top-down configuration (Figure 3a) exceeds

5207

—-_--—-‘!._.___'__.

] T
2 3 4 - 8

.

OPTIMUM FANQUT (F*)

Figure 2. Selecting fanout to minimize complexity.

their counterparts in the alternative design (Figure 3b)
because their counts of I/O variables are larger.

Parameter transfer between hierarchically adjacent
modules (e.g., from B to A) produces a lower complex-
ity than transfer via a global area when that is as far as
the data item goes. For a triplet connection (e.g., from B
to A to D), the two approaches have the same complex-
ity (“'X"" counts twice in each). This implication is
consistent with the results of an earlier study {10].
Because this model emphasizes the number of data
couples rather than the nature of the coupling mecha-
nism, it penalizes ‘‘tramp data’’ (data passed through but
not referenced by a module).

Rotenstreich and Howden [15] argue that both hori-
zontal and vertical data flow are essential to good
design. Appropriate use of horizontal transfers prevents
data flows from violating levels of abstraction. COM-
MON blocks provide the only mechanism for horizontal
data transfers in FORTRAN. Figure 3 shows that
horizontal flows can reduce the magnitude of the local
complexity measure in some situations.

Of course, a less complex design might also be

2-15

[

-
190 D. N. Card and W. W. Agresti
=
PROCA()
=
- <;’ qq
=
PROC B (X,) PROC D (X, |
o -~
& X
-
PROC C (X,) PROCE (X,)
-
(al STRICT TOP-OOWN STRUCTURED DESIGN
PROCA() -
=
PROC B {) PROC D ¢) -
/ -,
x GLOBAL X =
PROCCI 1 | _O=——>_ _| AREA oO— PROC E -
GLOBAL X s GLOBAL X
" Tiby LOWER COMPLEXITY WITH LATERAL TRANSFER -
Figﬁié 3. Reducing variable réiﬁg@iﬁdn to minimize complex- have?aﬁou “of one instead of PROC B having nout of =
iy. S) o two. Thus, structural complexity diminishes.) =~ -
produced by partitioning the work differently and 4: EVALUAT|ON VOEEQMPLEXITY MEASURES - —
restructuring this design. For example, PROC C could The value of the complexity measures defined in the L
be invoked directly by PROC E (if the nature of the preceding sections was evaluated in two ways. First the
problem permitted). This simpler structure would also- complexity scores for the eight projects were compared .
be reflected in lower values of the complexity measures ~ with a subjective rating of design quality using a_ =
defined by this model. (PROCs B and C would each nonparametric statistical technique. Then the complexity -
=

5207

2-16

Measuring Software Design Complexity

scores were compared with objective measures of
development productivity and error rate. This section
presents the results of the two evaluation approaches.
Productivity and error rates were computed using the
developed lines of code (DLOC) measure as defined by
Basili and Freburger [16).

Data for this analysis were extracted from the source
code of eight projects by a specially developed analysis
tool. However, software developers can easily extract at
design time the counts of modules, fanout, and [/O
variables necessary to compute these complexity mea-
sures. The eight projects studied were ground-based
flight dynamics systems for spacecraft in near-earth
orbit. Table 2 summarizes some general characteristics
of these software systems. The most recent project
studied was completed in 1981.

All of these systems were designed and implemented
to run under the Graphics Executive Support System
(GESS), an interactive graphics interface [17). Conse-
quently, GESS occupies Level 1 of each design hierar-
chy. GESS manages most external data interfaces for
these systems. It is not included in the complexity
calculations.

4.1 Subjective Quality

The eight projects were subjectively ranked in order
from best to worst, in terms of design quality, by a
senior manager who participated in the development of
all eight projects. Then, the four best-rated designs were
classified as *‘good’ while the other four were classified
as ‘*poor.’” Table 3 shows the results of that procedure.
The table also includes the computed complexity mea-
sures. Note that the four designs subjectively rated as
‘‘good” also demonstrated the lowest relative complex-
ity. The expert was not provided with specific criteria
for “*quality,’” but later reported that perceived ‘‘com-
plexity™ played a major role in assigning scores.

Table 2. Project Characteristics

Toal Percent Size Error
Project Modules Reused* (KDLOC* Rate® Productivity?

A 158 11 50 8.7 35
B 203 k23 49 8.0 2.9
[of 338 12 106 4.5 4.7
. D 259 23 37 4.0 47
E 327 4 83 45 48
F 393 47 b 7.1 4.1
G 199 49 57 7.2 2.3
H 245 43 56 6.6 24

* Percent of total modules.

¥ Thousands of developed lines of code.
¢ Errors per KDLOC.

¢ Developed lines of code per hour.

5207

191
Table 3. Design Complexity and Quality
Complexity

Design Quality

Project S L o Rating® Class
A 24.6 8.2 32.8 5 Poor

B 15.8 9.5 253 2 Good

C 1.8 2.1 23.9 3 Good
D 184 4.9 233 1 Good

E 12.6 10.0 22.6 4 Good

F 223 7.3 29.6 6 Poor
G 18.3 10.8 29.1 8 Poor
H 19.2 7.3 26.5 7 Poor

¢C = 5 + L as previously defined (Equation 2).
® Subjecfive evaluation (I = best, 8 = worst).

Although the correspondence between subjective de-
sign rating and numerical design complexity is not one-
for-one, if the data are viewed as quality classes, they
provide persuasive evidence for a relationship. (If one
uses the Wilcoxon rank sum statistic the probability is
less than 0.02 that the observed good/poor grouping
could occur by chance alone.) The objective complexity
measure appears to capture much of the information that
a human observer includes in a subjective evaluation of
design quality.

4.2 Performance Prediction

The other test of the value of these complexity measures
is their ability to predict software development perform-
ance in terms of the productivity and error rate ulti-
mately realized by the development team. A more
complex design will be more difficult to develop into an
acceptable system. However, let us first define a few
relevant quantities:

Developed lines of code—all newly developed source
lines of code plus 20% of reused source lines of code
[16].

Errors—conceptual mistakes in design or implementa-
tion. An error may result in one or more faults (code
changes). These were detected during integration and
system testing (after unit testing).

- Effort—hours of work by programmers, managers, and

support personnel directly attributable to a project.
Productivity—developed lines of code divided by effort
(in hours).

Error rate—total errors divided by developed lines of
code.

The developed lines of code metric attempts to account
for the lower cost and error rate attributable to reused
code. Table 2 shows the developed lines of code,

2-17

192

REQUIREMENTS
AND SPECIFICATIONS
11%

QOTHER -
2%

LANGUAGE AND
ENVIRONMENT
6%

productivity, and error rate for the eight projects. Note
that together these projects represent more than, 1,000
individual new modules produced by about 50 different
programmers.

Designers and researchers commonly assume that
higher complexity increases the propensity for error.
Potier et al. {18] observe that the implementation
process consists largely of translating design specifica-
tions into a programming language. It usually does not
add complexity to a system. Weiss and Basili [19] show
that the bulk (74-82%) of all nonclerical crrors reported
in three of these projects were related to design,
although sometimes at very detailed levels. Figure 4
shows the median distribution of errors for the projects
studied by Weiss and Basili [19]. Very few of these
errors are true programming errors. Of course, many
detailed design and- implementation errors are detected
during code reading and unit testing (not counted here).
In this context, clerical/transcription errors can be
regarded as random.

Figure 5 illustrates the relationship between design
complexity and error rate. It shows that design complex-
ity effectively predicts the total error rate for develop-
ment projects. Complexity (as measured here) accounts
for fully 60% of the variation in error rate. As seen in

Figure 5, all but one of the points lie very close to the =

regression line. In that case, Project B, the implementa-
tion team consisted of an unusually large proportion of

junior personnel (although its design team was compara-

ble to those of the other projects). Consequently, it

D. N. Card and W. W. Agresti

Figure 4. Source of software errors (from Weiss
and Basili [19]). Note: Excludes clerical/tran-
scription efrors.

seems reasonable to find a higher error rate than would
be indicated by design complexity alone,

Figure 6 illustrates the relationship between design
complexity and productivity. No clear relationship
emerges. However, as noted elsewhere [20], many
impontant factors external to the development process
(such as computer use and programmer expertise)
strongly affect productivity. In this case (consistent with
[20]), computer-hours-per-thousand-developed-lines of
code correlates strongly with the residuals from the
Figure 6 relationship (r = —0.79). Computer support
was only provided to these projects for detailed design,
coding, and testing, 5o it does measure a different set of
activities. However, the small sample size (at the project
level) inhibits evaluation of a more complex model
incorporating both complexity and computer use.

In this organization, the design team forms the
nucleus of the implementation and test teams. Additional
personnel join as they are needed. Thus, the complexity
measure provides an early indication of the performance
of the development team as well as of the quality of the
design. A good design team is likely to be a good
implementation and testing team, although productivity
may be difficult to predict.

5. REPRESENTATION OF DESIGN STRUCTURE

The numerical quantities defining these complexity
measures are the number of modules, fanout, and I/O
variables. Table 4 shows the distribution of these

2-18

5207

{

i

]

f

Measuring Software Design Complexity 193
10 -
- -~
. -~
’ —~&
// A
8 eB -
- G Pe - .
P
74 e,
o -
S -
a
x 6 o -
@«
2 -
£ 54 -
2 o~ o
7 _--F TC
4 < - ® 0
-~
d r = 0.83
1 pir = 0} = 0.02
2 -
1 4
T T T T T T T T T T T T T =
25 30 5

DESIGN COMPLEXITY

measures by hierarchical level for one project. This
design structure can be represented graphically, as
shown in Figure 7, by plotting the cumulative percent-
age of these quantities obtained at each level. Kafura and
Henry [21] employed a similar technique to show the
effect of design changes on complexity.

In this and subsequent plots, the design structure (or
profile) is simplified by combining all utility modules,
regardless of where they are invoked, into a single
deepest level of the design. That point is not plotted
(utility refers to new or reused modules that are invoked
from several different points within a design but not to
system or standard utilities). Levels greater than or equal
to 10 also are combined into a single level to facilitate
plotting. ,

As discussed earlier, the conditions that minimize
structural complexity result in an even distribution of
fanout. This produces an increasing growth rate in the
cumulative percentage of total fanout in the initial levels
of the design, followed by a gradual decrease in growth
rate as subtrees terminate. The percentage of modules is
driven by the fanout at the preceding level (minus calls
to utilities). Uneven use of utilities causes the module
line to fail to track fanout. Equation 5 showed that /O

5207

Figure §. Relationship to error rate.

variables should be proportional to fanout in order to
minimize local complexity. Together, these conditions
define the shape of a good (low relative complexity)
design.

Figure 7 illustrates Project E, the design with the
lowest relative complexity. It shows three closely fitted
““S*" shaped curves. Figure 8 illustrates Project A, the
design with the highest relative complexity. It shows
three separate and irregular lines. Profiles of the other
six projects fall in-between these two extremes in
correspondence to their measured complexity.

6. CONCLUSIONS

The complexity measures proposed in this report are
supported by substantial empirical evidence. The struc-
tural complexity component is similar to measures used
successfully by Belady and Evangelisti [3] and Henry
and Kafura [9] for other languages and application areas.
However, neither of these models, as originally formu-
lated, fit the SEL data very well. The new model

2-19

194 D. N. Card and W. W. Agresti
50 = E
« e D C
o
3 o ® O
I ~
7. \\
('S b
< ~
- ~ - F
7] ~ L J
x - v ~
& 4.0 i 5\\ .
S
a8 ~<
3 =~ »
W \\ .
S S~
w ~~
W S
F4 =~
= 3.04 B8 ~ <
g ¢ =~
5 ~~
z T~
Y N
w G
[= ®
2.0
r= — 049
T T T T T T T T 1 T T T T T ml
25 30 35

Figure 6. Relationship to productivity.

demonstrated good agreement with subjective assess-
ments of design quality as well as a numerical measure
of error rate. Moreover, all relevant measures can be
extracted at design time; the Henry and Kafura model
includes a code measure.

Table 4. Detailed Design Structure for Project E

Modulc Average

Executable Input/output

Level Modules statements Fanout variables-—- - -
2z 2 91 6.5 45
3 4 37 4.8 9
4 19 59 5.6 29
5 93 67 2.2 26
6 62 59 2.0 24
7 54 59 1.8 20
8 33 37 14 14
9 7 19 0.7 8
210 2 8 0.0 5
Utility -1 90 24 21

5207

DESIGN COMPLEXITY

Many software development methods, e.g., [22],

encourage trying design alternatives. Because software
developers can easily compute values for these complex-

ity measures at design time, they seem likely to be useful
for assessing design quality and comparing design
alternatives before committing a design to code. Overall
high-complexity designs, as well as individual high-
complexity modules, can be identified. These measures
could be adapted to support a measures-guided method-
ology such as that proposed by Ramamoorthy et al. [23].

Of course, complexity is not the only important
attribute of software designs. The minimum complexity
that can be achieved depends on the nature of the
application and the presence of design constraints.
Furthermore, design is not a deterministic process. The
same design approach or method applied by different
individuals can result in different designs. These com-
plexity measures help us to answer the question,
“Which is berter?’’ However, it is not enough to
produce a design that shows low complexity scores.
Following a sensible and well-defined design method
ensures that the design problem is responded to while
minimizing complexity. Measures play a supporting role

in the design process.

2-20

oy e 8k & € |

au Wi

Measuring Software Design Complexity

100 ~

CUMULATIVE PERCENTAGE

10 o

195

—-A FANOUT
—=Q 1/0 VARIABLES

—~{J MODULES

As Kearney et al. pointed out [24], ill-founded
reliance on complexity measures can degrade the soft-
ware development process by rewarding poor program-
ming practices. The approach to complexity measure-
ment presented here satisfies the requirements of
Kearney et al. [24] for effective complexity measures by
clearly identifying the attributes measured, deriving
them from a model of the design process, suggesting
how they can be used in practice, and empirically testing
their validity. Nevertheless, more work remains to be
done.

Three aspects of this current complexity measurement
approach require additional research. First, methods of
incorporating external I/O (e.g., files) into the complex-
ity measures must be developed. In the systems studied,
much of the external I/O is handled by the GESS stand-
ard interface. Second, the application of the measures

5207

LEVEL

Figure 7. Design profile of Project E (lowest complexity).

should be extended to designs using different formalisms
intended for different implementation languages. ‘*Mod-
ules’” corresponding to FORTRAN subroutines are not a
universal design structure. The SEL has begun to study
the application of these measures to Ada design [25].
Third, the existence of two design complexity compo-
nents suggests that two different types and distributions
of the design errors (in addition to programming errors)
also exist, as proposed by Basili and Perricone [26].
That needs to be verified empiricaily.

Finally, Kafura and Reddy {27] showed that similar
complexity measures appeared to related to software
maintainability. This suggests another new area of
investigation.

2-21

D. N. Card and W. W. Agresti

196
100 =
90
v
80 < -
70
W
<]
<
-
3 o004
Q
&
('Y
a
w .
2 504
< /
2 £
3 404 - =4 FANOUT
" «eQ /0 VARIABLES
30 —O MODULES
20 4
10 -
1 v i T L]
2 3 4 5 6 7 8 9 210 uT
LEVEL
Figure 8. Design profile of Project A (highest complexity). Structured Designs, J. Sys!ems Software 2, 113-120
(1981).
5. D. N. Card, F. E. McGan'y. G T Page et al., The
ACKNOWLEDGMENTS Software Engineering Laboratory, NASA/GSFC, SEL-
The authors would like to recognize the significant contributions 81-104, 1982. -
made to this work by F. E. McGamy (NASA Goddard Space 6. W. P. Stevens, G. J. Myers, and L. L. “Constanting; -
Flight Centen, G. T. Page (Computer Sciences Corporation), and Structured Design, /BM Systems J. 2, 115-139 (1974).
V. R. Basili (University of Maryland). We would also like to thank 7. B. Cunis, In search of software complexity, in Proceed-
the referees for their useful suggestions for discussion and ings, IEEE Workshop on Quantitative Software
clarification.” ™ Models. Computer Society Press, New York, 1979, pp.
95-106.
8. G. Booch, Object Oriented Design, /EEE Trans. Soft-
REFEBENCES e 7 ware Engineering 12, 211-221 (1986).
1. M. H. Haistead, Elerments of Software Science, Elsevier 9. 5. M. Henry and D. G. Kafura, Software Structure
Science Publishing, New York, 1977. Metrics Based on Information Flow, JEEE Trans. Soft-
2. T. 1. McCabe, A Complexity Mcasure, JEEE Trans. ware Engineering 7, 510-518 (1981).
Software Engineering 2, 308-320 (1976). 10. D. N. Card, V. E. Church, and W, W. Agresti, An _
3. L. A. Belady and C. J. Evangchsn System Partitioning Empirical Study of Software Dessgn Practices, JEEE
and lts Measure, J. Systems Software 2, 23-39 (1981). Trans. Software Engineering 12, 264-271 (1986).
4, D. A. Troy and S. H. Zweben, Measuring the Quality of 11. D. H. Hutchens and V. R. Basili, System Structure
2-22

5207

=i

|

Measuring Software Design Complexity

13.

Analysis: Clustering with Data Bindings, /EEE Trans.
Software Engineering 11, 749-757 (1985).

. V. R. Basili, R. W. Selby, and T. Phillips, Metric

Analysis and Data Validation Across FORTRAN Pro-
jects, JEEE Trans. on Software Engineering 9, 652-663
(1983).

D. N. Card, G. T. Page. and F. E. McGarry, Criteria for
software modularization, in Proceedings, IEEE Eighth
International Conference on Software Engineering.
Computer Socicty Press, New York, 1985, pp. 372-377.

. D. L. Pamas, On the Criteria to be Used in Decomposing

Systems into Modules,'* Commun..ACM 15, 1053-1058
(1972).

. S. Rotenstreich and W. E. Howden, Two-Dimensional

Program Design, IEEE Trans. Software Engineering

-12, 377-384 (1986).
. V. R. Basili and K. Freburger, Programming Measure-

ment and Estimation in the Software Engineering Labora-
tory, J. Systems Software 2, 47-57 (1981).

. Computer Sciences Corporation, CSC/SD-75/6057,

Graphics Executive Support System User’s Guide,
1975.

. D. Potier, J. L. Albin, R. Ferreol, and A. Bilodeau,

Experiments with computer software complexity and
reliability, in Proceedings, IEEE Sixth International
Conference on Software Engineering. Computer Soci-
ety Press, New York, 1982, pp. 94-101.

. D. M. Weiss and V. R. Basili, Evaluating Software

Development by Analysis of Changes: Some Data from
the Software Engineering Laboratory, /EEE Trans.
Software Engineering 11, 157-168 (1985).

5207

20.

21.

22.

23.

24,

2.

26.

27.

28.

197

D. N. Card, F. E. McGarry, and G. T. Page, Evaluating
Software Engineering Technology, IEEE Trans. Soft-
ware Engineering, 13, 845-851 (1987).

D. G. Kufura and S. M. Henry, Software Quality Metrics
Based on Interconnectivity, J. Systems Software 3,
121—=131 (1982).

S. Steppel, T. L. Clark, et al., Digital Systems Develop+
ment Methodology, Computer Sciences Corporation,
1984,

C. V. Ramamoorthy, W. Tsai, T. Yamaura, and A.
Bhide, Metrics guided methodology, in Proceedings,
fEEE Ninth International Conference on Software and
Applications. Computer Society Press, New York, 1985,
pp. 111-120.

J. K. Kearney. R. L. SedIlmeyer, W. B. Thompson, etal.,
Software Complexity Measurement, Commun. ACM 29,
1044-1058 (1986).

W. W. Agresti, V. E. Charch, et al., Designing with Ada
for satellite simulation: A case study, in Proceedings of
the First International Conference on ADA Applica-
tions for the NASA Space Siation, 1986, pp. F.1.3.1-
14.

V. R. Basili and B. T. Perricone, Software Errors and
Complexity: An Empirical Investigation,”' Commun.
ACM 27, 42-52 (1984).)

D. G. Kafura and G. R. Reddy, The Use of Software
Complexity Metrics in Software Maintenance, /EEE
Trans. Software Engineering 13, 335-343 (1987).

D. N. Card and W. W. Agresti, Resolving the Software
Science Anomaly, J. Systems Software 7, 29-35 (1987).

'QUANTITATIVE ASSESSMENT OF MAINTENANCE:

An Industrial Case Study

Pl H. Dieter Rombach and Victor R. Baaili

*vﬂ:’nivenity of Maryland

Dept. of Computer Science
College Park, MD 20742, USA

(301) 454-8974 __

Abstract

In this paper we discuss a study aiming at the improve-
ment of measurement and evaluation procedures used in an
industrial maintenance environment. We used a general
evaluation and improvement methodology for deriving a set
of metrics tailored to the maintenance problems in this par-
ticular environment. Some of the required maintenance data
were already collected in this environment, others were sug-
gested to be collected in the future. We discuss the general
measurement, evaluation and improvement methodology
used, the specific maintenance improvement goals important
to this environment, the set of metrics derived for quantify-
ing those goals, the suggested changes to the current data
collection procedures, and preliminary analysis results based
on 2 limited set of already available data. It is encouraging
that based on this limited set of data we are already able to
demonstrate benefits of the proposed gquantitative approach
to maintenance. Finally, we outline ideas for automating the
discussed approach by a set of measurement and evaluation
tools. This paper emphasizes the steps of introducing such a
quantitative maintenance approach into an industrial setting
rather than the environment-specific analysis results. The
analysis results are intended to demonstrate the practical
applicability and feasibility of the proposed methodology for
evaluating and improving maintenance aspects in an indus-
trial environment.

1. Introduction

In this paper we present results from a study trying to intro-
duce sound measurement and evaluation procedures into an
industrial maintenance environment. The goal of the study
has been to investigate the company’s needs for quality
assessment, and the suitability of the error, change, and
effort data already collected in this environment for address-
ing these quality assessment needs.

First we describe the actual industrial maintenance
environment which has been the object of this study includ-
ing the high-level maintenance assessment and improvement
goals as stated by high-level management (section 2) and the
goal/question/metric paradigm" * 7 used in this study for
defining and quantifying the maintenance assessment and

This study was supported by & graut from Burroughs Corporation Lo the Univer-
sity of Marylaad. Computer time was provided in part through facilities of the
Computer Science Center of the University of Marylsad.

CHZ2442-2/87/0000/0134501.00 ® 1987 IEEE

5207

improvement goals of interest. The application of this
methodology has resulted in a list of clearly defined mainte-
nance assessment and improvement goals and quantifiable
questions (section 4) as well as the corresponding data and
metrics (section 5). Until now only a subset of these data
and metrics required to fully address the stated maintenance
goals had been collected (section 8). Based on the needs of
the particular industrial environment changes to the data
collection and validation process have been suggested for the
future (section 7). Preliminary analysis results for a small
subset of the questions and goals of interest (depending on
the type, amount and quality of data available at the time)
are presented (section 8). It is encouraging that based on
this limited subset of data we are already able to demon-
strate benefits of this quantitative approach to maintenance.
Finally, we outline ideas for automating the proposed
approach by a set of measurement and evaluation tools (sec-
tion 9). This paper emphasizes the steps of introducing such
a quantitative maintenance approach into an industrial set-
ting rather than the environment-specific analysis results.
The analysis results are only included to demonstrate that
the proposed approach actually works in this particular
environment.

Y,

The study was conducted in the maintenance environmens of
& major computer company. The maintenance process from
an organizational point of view can be characterized as fol-
lows: Customer Support receives maintenance problems
(mainly) from customers, evaluates them and, whenever
appropriate forwards them in the form of change requests to
Product Assurance. Product Assurance evaluates the
change requests again and forwards them, whenever
appropriate, to Engineering. The eventually changed pro-
ducts are sent back to the customer(s) through the same
channels (Product Assurance, Customer Support).

Data are currently being collected during all these
different maintenance steps. Customer Support collects data
for each single problem concerning scheduling (e.g., time of
incoming calls, time of outgoing calls), type of problem (e.g.,
clarification of documentation, operation request; for a com-
plete list see table 2), priorities of problems, and effort speat
on handling the problem. Product Assurance collects data
for each single change request concerning scheduling, type of
change request, effort spent, and final status {e.g., changed,
change postponed, change rejected including the reason for

[V |

B

i e

i

i

tl‘

f

rejection). Engineering collects data for each change con-
cerning scheduling, change effort, and the type of change
performed. Data collection is mandatory in some groups such
as Product Assurance; it is done on a voluntary basis in
other groups such as Engineering. Based on this fact the
completeness and validity of collected data varies across the
entire maintenance environment. In general it is true that
Customer Support and Product Assurance stress data collec-
tion more than Engineering does.

Although this is a very simplified description of the
maintenance process it should allow the reader to under-
stand the different needs of these three different maintenance
roles as far as assessment needs are concerned.

The data were used for filing status reports concerning
the handling of maintenance requests but not (except locally
in some groups) for overall quality assessment. The purpose
of this study was to find out whether the already collected
data are sufficient for assessing the environment specific
maintenance problems and, if not, to suggest changes of this
data collection process.

The most urgent maintenance assessment and improve-
ment goals were formulated by corporate representatives of
the company as follows:

G1: Examine where the bulk of the company’s maintenance
dollars are being spent and how much is being spent on
individual activities. .

G2: Identify the best ways of applying the 20/80 rule to get
the biggest savings and return on our maintenance dollars.

G3: Identify criteria for when a product is ready for release.

G4: Identify features of product, documentation or support
that provide a wider customer satisfaction.

G5: Identify criteria for when a software product should be
rewritten rather than maintained.

G6: Identify metrics of customer satisfaction that can be
developed based upon existing data.

G7: Develop organizational guidelines for integrating
software quality metrics into the company’s framework of
design, development, and support.

It is obvious that these high-level and complex prob-
lems can only be assessed by breaking them down into more
and more simple problems. This refinement process, which
finally is expected to result in a set of quantitative metrics, is
supported by a methodology developed by the authors"*".

3. The Goal/Question/Metric Paradi

The approach to quantification of goals is the
goal/question/metric paradigm* * *’. This paradigm does
not provide a specific set of goals but rather a framework for
defining goals and refining them into specific quantifiable
questions about the software process and product that pro-
vide a specification for the data needed to help answering
the goals.

The paradigm provides a mechanism for tracing the goals of
the collection process, i.e. the reasons the data are being col-
lected, to the actual data. It is important to make clear, at
least in general terms, the organization’s needs and concerns,

¢ Appiylag the 20/80 ruie menns to identify those maintensnee prodblems which can
be fixed essily (with twenty percent of the eflort of what would be required to fix
all maintenance problems) but reduce the maintenance overhead drastically (by
tighty percent).

5207

the focus of the current project and what is expected from it.
The formulation of these expectations can go a long way
towards focusing the work on the project and evaluating
whether the project has met those expectations. The need
for information must be quantified whenever possible and
the quantification analyzed as to whether or not it satisfies
the needs. This quantification of the goals should then be
mapped into a set of data that can be collected on the pro-
duct and the process. The data should then be validated
with respect to how accurate it is and then analyzed and the
results interpreted with respect to the goals.

The actual goal/question/metric paradigm is visualized in
figure 1.

Goal_1

Question_1 Question 3 Q Question_$

Question_2 Question_8 Question_7

u%u -.41&-) -.A-J\J-J

Figure 1: Goal/Question/Metric Paradigm.

Here there are n goals shown and each goal generates a set of
questions that attempt to define and quantify the specific
goal which is at the root of its goal tree. The goal is only as
well defined as the questions that it generates. Each ques-
tion generates a set of metrics (m_i) or distributions of data
(d_i). Again, the questions can only be answered relative to
and as completely as the available metrics and distributions
allow. As is shown in figure I, the same questions can be
used to define different goals (e.g. Question_6) and metrics
and distributions can be used to answer more than one ques-
tion (e.g. m_l1 and m_2). Thus questions and metrics are
used in several contexts.

Given the above paradigm, the process of quantifying
improvement goals consists of three steps:

(1) Generate a set of goals based upon the needs of
the organization.
The first step of the process is to determine what it is you
want to improve. This focuses the work to be done and
allows a framework for determining whether or not you
have accomplished what you set out to do. Sample goals
might consist of such issues as on how to improve the set
of methods and tools to be used in a project with respect
to high quality products, customer satisfaction, produc-
tivity, usability, or that the product contains the needed
functionality.

(2) Derive a set of questions of interest or hypotheses
which quantify those goals.
The goals must now be formalized by making them
quantifiable. This is the most difficult step in the process
because it often requires the interpretation of fuzzy terms
like quality or productiyity within the context of the
development environment. These questions define the
goals of step 1. The aim is to satisfy the intuitive notion
of the goal as completely and consistently as possible.

(3) Develop a set of data metrics and distributions

which provide the lnforma.tlon needed ta answer
the questions of interest.
In this step, the actual data needed to answer the ques-
tions are identified und associated with each of the ques-
tions. However, the identification of the data categories is
not always so easy. Sometimes new metrics or data distri-
butions must be defined. Other times data items can be
defined to answer only past-of & question. In this case, the
answer to the question must be qualified and interpreted
in the context of the missing information. As the data
items are identified, thought should be given to how valid
the data item will be with respect to accuracy and how
well it captures the specific question.

In writing down goals and questions, we must begin by
stating the purpose of the improvement process. This pur-
pose will be in the form of a set of overall goals but they
should follow a particular format. The [ormat should cover
the purpose of the process, the perspective, and any impor-
tant information about the environment. The format (in
terms of a_generic template) might look like:

¢ Purpose of Study:
To (characterize, analyze, evaluate, predict, motivate) the
(process, product, model, metric) in order to (understand,
assess, manage, engineer, learn, improve) it.

o Perapective of Study: !

Examine the (cost, effectiveness, correctness, errors,
changes, product metrics, process metrics, reliability, user
satisfaction, etc.) from the point of view of the (developer,
manager, customer, corporate perspective, etc).’ £
o Environment of Study:

The environment consists of the following: process factors,
people factors, problem factors, methods, tools, con-
straints, etc.

o Process Questions:
For each process under study, there are several subgoals

that need to be addressed. These include the quality of

use (characterize the process quantitatively and assess how

well the process is performed, the domain of use (charac-
térize the object of the process and evaluate the knowledge
of object by the performers of the process), effort of use
(characterize the effort to perform each of the subactivities
of the activity being performed), effect of use (characterize
the output of the process and the evaluate the quality of
that output), and feedback from use (characterize the
major problems with the application of the process so chat
it can be improved).

Other subgoals involve the interaction of this process with
the other processes and the schedule (from the viewpoint
of validation of the process model). .

¢ Product Questions
For each product under study there are several subgoals
that need to be addressed. These include the definition of
the product (characterize the product quantitatively) and
the perspective of the evaluation (e.g. reliability or user
satisfaction). The definition of the product includes physi-
cal attributes (e.g. source lines, number of units, execut-
able lines, control and data complexity, programming lan-

5207

136

guage features, time space), cost {e.g. effort, time, phase,
activity, program), changes (e.g. errors, faults, failures and
modifications by various classes), and the context the pro-
duct is supposed to be used in (e.g. customer community,
operational profile). The perspective of the evaluation is
relative to a particular quality (e.g. reliability or user
satisfaction). Thus the physical characteristics need to be
analyzed relative to this quality aspect. .

We applied the methodology described in section 3 to specify
the high-level quality assessment and improvement goals
given to us from a corporate perspective (see section 2) more
precisely, and to derive quantifiable analysis questiona.
Using the template of section 3 proved to be very Helpful.
The entire process of specifying goals and deriviog the
evaluation questions was done in very close cooperation with
company representatives from Customer Support, Product
Assurance, and Enginaering.

The seven goals for this study are formulated in
terms of the purpose of this study, the perspective of
this study, and important information about the
company’s maintenance environment:

« PURPOSE OF STUDY: Characterize {in the case of goals G1 and G4)
and evaluate (G2, G3, and GS) the maintenance methodology and
motivate (G6 and G7) the use of metrics for the purpose of better
understanding (G1 and G4), management (G2, G3, GS, G6, and G7) and
improvement (G2, G3, G§, G6, and G7)

o PERSPECTIVE. Examine the cost (in ¢ thc case of ;oala Gl G2 GS and
GT), problems {G2), etrors and chaages (Gt and G5}, product and pro-
cess metrics (G3, G4, G5, and G8) and the effectiveness (G7) from the
point of view of the manager and corporation

¢ ENVIRONMENT:

- Maintenance Process: The customer reports problems (by phone) to
the Customer Support; il problems cannot be resolved by Customer
Support they are forwarded to Product Assurance. Product assurance
decides whether the reported problem should be fixed. I approved as
a problem to be fixed it is submitted to engineering (to be fixed), gets
back to Product Assurance {for fix cemﬂcatlon) ‘and is sent back o
Customer Support. "~ T

- Maintained Products (Tor which we had access to data] A retrieval
system [called SYS_1 in the lollowing of this paper)
and a compiler {called SYS_2 in the following of this

paper).

For each process and product under study, there are
several subgoals (quality of use, domain of use, effort
of use, effect of use, and feedback of use); each
subgoal will be addressed by s number of analysis
questions (Qi):

(A) PROCESS RELATED QUESTIONS:

. QUALITY OF USE (chnnct.erhe the company 's mslnunlnu
process and how well it is performed); -

Q1 What percent of the problems are handled by Customer Support
without forwarding them to Product Assurance? What is a distri-
bution of their disposition?

2-26

gl

¢ DOMAIN OF USE (chsracterise the objecta of the maintenance

Q2: What percest of cb requests forwarded to Product Asurance ::l“'"l: t{‘;lp:m": causes,
do not come from the field? What is s distribution by percent of o Iumeitin the :h;n .
where they come from (engineering, field test, etc) snd the res- : :::.i: the cgm . “d!)
sous they do not come from field? What percent of problems) eleu.si‘n the ch! o
aren't reslly maintenance problems? r & ange’

Q3: For chage requests rejectsd by Product Assurance or Engineering: [Give the max, min, average and by various types of changes!]

‘What are the distributions by

cod ¢ EFFECT OF USE (charscterise the output of the maintenance
; CW:MO:'Y ible for rajsction, and process and the quslity of this output)

8) acheduie by closure code by organitation? Qi4: How many and what percent of documents are produced/modified

a8 & result of the maintenance process (patch, user manual, addi-
tional technical documents, closure form, patch release informa-
tion form, advanced technical information form and user fetter)?

Q4: What are characteristics of the test plan performed by engineering
before relesse? How effective is this test plan?
More detailed: [s the test suite based upon the new or changed
finsl requirements? Are regression tests performed? Are the tests Q1S: How many and what percent of change requests cause a
based upon the importance and complexity of the requirements? modification?
What criteris exist {or the selection of test cases and test data?

Q16: How many and what percent of change requests are related to

errors; environment adaptations, and requirements changes (=
enhancements)’

Q5: What are test cases and test data for the beta test? To what extent
does it consider the future usage profile? How eflective is this
test?

Q17. How many and what percent of faults are the result of a previous

Q6: For each fix: How long after the fix is made is it released to the cus- change?

tomer?
. . . . Q18: What 1s the average cost of a change overall and by type?
Q7: What is the distribution of faults or customer problems per organi-

tational unit in total and by various products? Q19: Having categorized changes by function, having made a change in

» function' How many future requests do we get for the same

Q8: What is the disribution of faults due to previous changes per function?

organizational unit in total and by various products?

Q20: What are characteristics of customer calls over time by type of

Q9: What are the distributions of change requests by various subclasses question?

(fsult/modification, rejected/not rejected, error subclasses,

- change subclasses)? Q21. What customer categories exist? Do clusters of customer profiles

(types of complaints, faults, etc) match these categorization
schemes?

process and the knowledge of the people involved in this

Q22: Is the user satisfied with function, performance, schedule {by & user
maintenance process):

satisiaction survey)?
Q10: What products are availabie to
* FEEDBACK FROM USE (characterise the problems with the

application of the maintenance process so that it can be
improved):

- customer support personnel,
- problem evaluator,

- changer,

- change evalustor, snd

- the field support? Q23 What are the problem areas in the maintenance process by the fol-

lowing categories.
Q11: What is the knowledge of the people involved wrt ¢ €
1) th licati - distribution of changes by various types,
e i , PSR . .
2) the ;p.rﬁ:h:np roduct, and - distrid of probl that are rejected by various types,
! e - customer types, and
3) the change methodology’ - tme distribution (calendar time, effort) by various change
Lypes, problem types, or maintenance sctivities?

s EFFORT OF USE (characterise the effort to perform each

-

malntenance sctivity)

Q12: What is the cost of (B) PRODUCT RELATED QUESTIONS:
- detecting s problem symptom
und ding the problem,
- isolsting the problem causes, ¢ DEFINITION OF THE PRODUCT (characterise the
- designing the change, product quantitatively):
- implementing the change, Q24: What are the physical attributes such as
- testing the change, and) .
- releasing the change - size (source lines, number of units, executable lines of
code),
in terms of computer time, le ti - complexity (control, data),
machine ctugor;? . People time, by person category aad - programming !anguage features,
- time to deveiop,
Q13 What is the calendar time for - memory space, and

- execution frequency?
- detecting & problem symptom, . o ivity)?
- understanding the problem from a customer’s viewpoint, Q25: What is the cost, e.g., effort (time per phase, activity)
- understanding the problem from an engineering view int, ;
e Sep saginesring viewpor Q26: What are distributions of changes, ¢ g, errors, faults, failures,
daptati and eah by various types

137

5207

QUEITNS
PROCESS [—
QUALITY OF LEE DOMAIN CF USB | IFFORT OF USB lnt:;d;n-
sl @i e s |e|F S| > o Qi Quz Qs Q4 [Qs [Qe [y [Qe [Qs | Q0 [Qnn Qe Qs |G | Qo | Qe | Qe | Qm
a x z 1 z 4 x x x z x 1 H L b X X x x x ,. 4 b] z x x x X z
a g x| x s |* x|tz 3 T x x x x x 3 x x = x x z T T z
a x tpx | bl jxx * z x x]z
T z sz {slxjx|® ¥ L 4 z X X x]] X x H 3 x x z
s x 2]z lx x £ z H x 2 b2] x 2
e] z z 2 ix K[X z z = 1 z H % x z
ar xlx|=xls z (5 |z x H 2 L4 x x x x = x x x 2 x x x z x z x x
Table 1: Goal-Question Matrix
Q27 What is the products context, ¢g, customer community, D9 (+): schedules for each activity iated with o cust prob-
operational profile, life cycle model, ete? lem

Q28; What are the problem areas in the product by the following
categories:

- distribution of changes by varicus types,
. distribution of problems that are rejected ted by variows

types,

- customer types, and B)

- time distribution (calendar time, eflort} by various change
types, problem types, or maintenance activitiea?

Each individual evaluation goal is quantifiable via su‘bset of
these 28 evaluation questions. In table 1 the interrelationship
is visualized in form of a goal-question matrix.

5. Maintenance Data & Metrics

In this section we discuss the types of maintenance data
which has to be collected in order to answer each of the
evaluation questions derived in section 4.

The data {Di) are categorized depending om which
maintenance aspect (Customer Support, Product Assurance,
or Engineering) is mainly affected. For each data it is indi-
cated whether and how it can be retrieved {rom currently
maintained data bases, i.e., whether it is explicitly available
(+), it is not explicitly available, but can be derived from
other data with reasonable effort (o), a great deal of effort

(00), or it is not available at all (-).

(1) CUSTOMER SUPPORT ORIENTED MAINTE-
NANCE DATA: -

For each problem reported by customers (phone calls):

D1 (+): customer identification

D2 {00): customer type

D3 (+): customer support center identification

D4 (o): problem description

DS (+) whether a problem resuited in a change request {Y/N)

D6 (o0): connection between customer problem and change
request_number

D7 {+): dentification of affected system/product

D8 {-): identification of affected product functions

5207

(2) PRODUCT ASSURANCE ORIENTED
MAINTENANCE DATA:

For each problem reported by . chu‘n request:

D10 (+): identification of the organization that filled out the change
request (customer support, enginesring, fiald test, ete)

D11 (+): identification of system/product affected

D12 (+): customer identification

D13 {(-): customer type -

D14 (+): identification of Product Assurance center in charge

D15 (o): concise problem description

D16 (o): informstion whether a change request was rejected (Y/N)

D17 (+): final change request status (= closurs code)

D18 (-). inlormation by whom (Product Assirance, Engmnnn;) clo-
sure code was set

D19 (+): schedules for each maintenance activity

D20 (+): information whether it is s fault, adaptation, or enhsnce-
ment

(3) ENGINEERING ORIENTED MAINTENANCE
DATA:

For each actually peﬁomed change:

D21 (+): identification of the engineering group in charge

D22 {-). information about fault types (for example: control, data,
computation, etc)

D23 (o) information whether a fault was caused by 2 previous change

D24 (o) information which product units {moduies) wers affected by &
change (in terms of lines of code or identification of
modules)

D2s s ; effort in computer time in total or per phase, change activity

Dis effort in people time in total or per phase, change activity

D27 (+): schedule for each chaage activity (in calendar days)

D28 (o) percent of code, documents, forms changed

D29 {o} product size

D30 éo)‘ product complexity

D31 {-). memory space

The following question-data matrix (see table 2) shows which
of the 31 different types of data are required as a minimum
to answer each of the previously listed 28 questions:

138

L TN l

iR

0o
‘IH \‘

DATA/MBAS IS
qmmnuuumuuumulmmnompumvmm-mmmumaﬁmmwwwm
Qo T |z z i
- J 1)
> x x| x|z
Q9
(C)
> x
s x|z 4 1 x oz x x| x|z
> [x x 2 2|12 T T |1 x
@ 1 x x
Qe
Qu
Qs X IR
s] x I
Q4) x
Qs 1
e H H
ur x H
et x z [x
Qe k| = z
e z
@ i1 x LI § z
{Qm)
[~]
i x| x| x
s x |z
)] 2 z z x
Qm
-}

The questions enclosed io parenthesis have to be answered purely by subjective data.

The complete refinement process from the original goals over

Questions to the data/metrics can be traced by combining
tables 1 and 2.

In the previous section it was indicated what data are
needed for answering the questions of interest. We also
included the analysis results to which degree those data are
already available inside the company (+,0,°).

Int.e‘rprtlet'ing the question/data matrix together with the
availability and validity of the company’s data the following
conclusions can be drawn:

<= Questions Q6, Q13, Q15, Q16, Q17, Q20 are completely

answerable

- Questions (Q4), (QS5), (Q10), (Q11), (Q22) will not be

5207

answered based on data collected via regular data collec-
tion forms, but by subjective data from interviews.

- Questions Q23 and Q28 require no data, they are answered
by interpreting the results of more basic questions

- All questions related to change effort (Q12, Q18, Q25) can
not be answered because (at least in the case of SYS_] and
SYS_2) these data were listed as optional on the data col-
lection form and therefore only listed on about 10% of all
forms.

- All other questions are (at least partially) answerable

Z.Jmprovement of Data Collection

Based on the company’s interests ns documented by the
high-level problems (see sectiog 2) and the refined set of
evaluation questions (see section 4), and the partial lack of
valid data available to analyze those questions, the following

recommendations for changing the data collection process are
being made:

- A uniform dats collection method and data base should be

defined..
Some data items are interpreted differently by different
people. Each organizational unit inside the the mainte-
‘mance environment has its own data base format. This
fact makes it difficult to assess maintenance problems from
global views. It ia for example difficult to analyze engineer-
ing data from various sitesr-or the complete life cycle of
maintensance problems starting at Customer Support
throughout Product Assurance and Engineering.

- A maintenance task should be viewed as a single entity in

this data base, and it should be traceable through all its
phases (Customer Support, Product Assurance, Engineer-
ing}. Due to the "bottom-up” development of individual
data bases, each data base contains only those data impor-
tant to the individual organization.
The only solution seems to be a central data base that
contains all information concerning each maintenance task
starting from the first phone call and ending with its final
resolution.

- It is mandatory to collect engineering data (effort in
staff_hours).

Engineering data are crucial for determining maintenance
problems due to product quality problems (e.g., bad struc-
ture). L

- Development data (errors, changes, tests, etc.) should be

collected.
Collection of development data has to start now. As soon
as the identification of the maintenance problems is com-
pleted, the impact of product quality and development
methodology on these problems has to be analyzed. In

order to do this, data characterizing the development pro-
cess are needed.

8. Preliminary Analysis Results
In order to demonstrate the benefits of quantitative assess-
ment of maintenance we used the data collected at the time
to answer some of our maintenance questions listed in sec-
tion 4. We had data available for two commercial systems
SYS_1 and SYS_2 {retrieval system and a compiler). We

had maintenance data available from the first two quarters
of 1950,)

In section 8 we outlined the questions which could be
answered based on the data available. In the following we
present preliminary analysis results of those questions in the
context of the originally posted high-level corporate mainte-
nance problems (1) to (5) as listed jn section 2.

(G1) Examine where the bulk of the company’s
maintenance dollars are being spent and how much
is being spent on individual activities:

This goal area can be addressed by the following analysis
questions (see section 4): =

® Question 20: (What are characteristics of customer calls
over time by type of question_?) -=> Table 3

The average number of calls per problem is about 4.
The most frequent problems are operation questions,
capability features, and clarification of documentation
(in the case of SYS_1) or operation fault (in the case of
SYS_2). The costly problems (in terms of number of

calls) are documentation faults, system software, and
operation faults (in the case of SYS_1), and clarification
of documentation, capability features, operation ques-
tions, and pre-sales requests (in the case of SYS_2).

Question 1 (Mat ﬁeréent of problems are not reported
as change requests? What is a distribution of their
disposition?) . Table 4

Overall only about two percent of all problems recorded
by Customer Support resulted in change requests (3 out
of 177 for SYS_1, 3 out of 152 for SYS_2).

The disposition of problems not reported as change
Tequests in terms of "type of call® is as follows: =

The bulk of maintensnce problems haadled by Custo-
mer Support is spent for “operation requests” aand
"operation faults” in the case of SYS_3; ia the case of
SYS_1 we can identily two additional problem sources:
problems due to fauits of underlying layers (systems
software and hardware) and problems due to bad docu-
mentation (almost 20% of all problems 1)

SYS §Ys 2
sall-type ealls | L calls/problem |lcalls | problems . calls/problem |

unkaows type 5 2(1.1%) EX3 - - -
clarify document 10 | 38 (19.8%) 37 M | 7(4.0%) 19
operstion question 172 | 46 (28.0%) a7 378 | 78 (51.3%) 48
pre-sales request 7 2 (11%) 3.5 9 2(1.3%) 4.5
capability, feature 32 | 30{169%) 29 84 |17 (11.29%) 49
other 43 13 (1.3%) 33 61 18 {12.6%) 3.2

doeument fault 7 1{0.0%) 70 - - -
operation fault 50 10 (5.8%) S0 4 | 0(13.2%) 22
sppliestion SW change request - B - 3 1(0.7%) 30

application SW fault 4 1(0.6% 40 - - -
system SW fault 85 15 (8.5%) 57 15 4 (2.8%) 38
system SW chaags request 1«4 I{L7%) 47] 2(1.3%) 30

instruction feult 7 2(1.1%) 35 - - -

w 87 | 17(9.0%) 39 5 7(1.3%) ,
AVERAGE 17 4.1

5207

2-30

b {

ai

"
i

e

Qi

(1]

wi

(

il

{

ORIGINAL
OF POOR QUALITY

PAGE 1S

SYS 1 5Y5.2
__call-type sells | oroblems calls/problem | caliy oble celis/problem |
unknows type 5 2 (11%) 25 - . .
clarify document 130 35 (19.8%) 37 34 7 (4.0%) “
operation question 172 46 (28.0%) 37 s 78 (61.3%) 48
pre-ssles requast 7 2 (1.1%) 35 ¢ 2 (1.3%) 4.5
capability, feature 88 30 (16.9%) 29 84 17 (11.2%) 49
other 3 13 (7.3%) 33 81 16 (12.5%) 32
document fault 7 1(0.0%) 70 - - .
operation fault 50 10 (5.6%) 5.0 “" 20 (13.2%) 2.2
spplication SW fault 4 1{0.6%) 4.0 - - -
system SW fault 35 15 (8.6%) 57 15 ¢ (2.6%) as
instructios fault 7 2(11%) 5 - - -
HW faqlt 97 _| 17 [9.6%) 39 H 201.3%) 25
TOTAL 086 | 1747177 (083 %) 37 830 | 149/162 (98 %) o1

e Question 2 (What percent of problems sren’t really

maintenance problems?) .. Table 5

Table 5; Portion of Real Maintenance Problems

SYS_1 }[SYS_ 2
Number of total problems 177 152
Number of maintenance problems 80 116
percentage 452 % 1|763 %

Not all of the problems reported to Customer Support
‘are really maintenance problems. There are, for exam-
ple, lota of requests from different divisions inside the
company. From a global view, all the effort spent in
Customer Support is charged as maintenance effort. In
the case of SYS_1, only about 45% of all problems (80
out of 177), and in the case of SYS_2, only about 76%
of all problems (116 out of 152) are really maintenance
problems.

e Question 3 (What is the distribution of rejected change

requests by closure code?) ..~ Table §

The distribution of rejected change requests by closure
code is as follows:

Table 6; Bejected Change Requesta by Closure Code

Systems

Closure Code SYS 1 | SYS 2
need additional information 11 11
pot reproducible 1 -
no fix scheduled 3 2
already fixed 45 25
forwarded to ... - 2
works as intended [} 1
works as documented - 3
incorrect documentation 2 -
operation problem 1 1
document required 1 -
not retrofit 2 8
other - 2

o Question 12 (What is the cost of7)

Because we have no effort data concerning the Product
Assurance and engineering aspects of the maintenance
process, we only could analyze effort as far as Customer
Support was concerned:

The cost for each individual maintenance problem (as
far as Customer Support is concerned) can be character-
ized

5207

SYs_1 S5YS 2
time {migs) | problems | time/problem time {mins) | problems | time ¢
voknowe type 52 b 26.0 - - B
clarify document 701 3 2.8 247 7 353
operation question 1203 48 2.1 Ry px 78 47
pre-sales request 38 2 18.0 211 2 106.5
capability, feature 730 30 248 747 17 44.0
other 247 13 190 13 19 428
document fault 43 1 430 - - -
operation lault 303 10 303 522 0 26.1
spplication SW change request - - - 20 1 20.0
spplication SW fault 53 1 53.0 - - .
system SW fault 500 15 kR 78 4 194
system SW change request 187 3 55.8 8 2 40
instruction fault 13 2 8.8 - - -
37 17 18.3 3 2 186
AVERAGE 253 (mins) mis
141
2-31

SYS_I 5Ys 2
_sl-type time (ming) | problems | time/problem |ltime (mina) | problems | ble
clarify document 885 35 198 305 7 43.8
operation question 317 46 0.4 4082 78 §2.1
pre-sales request 45 2 225 130 2 450
capability, feature 1108 0 8 855 17 503
other 240 13 185 1810 134 5.3
document fault 17 1 1170 - -
operstion fault 210 10 n.o 75 20 38
spplifistion SW feult 330 1 3300 - - -
systema S'W lault 1126 15 75.0 ™ 4 102.3
system SW change request 115 3 383 338 2 1875
instruction fauit 0 2 10.0 - - -
HW rault | _ 780 17 459 35 3 32.5
AVERAGE 40.5 (mina} 68.7 {mins}

- by the number of phone calls per problem:

The average number of calls (interactions with the
customer) per problem is about 4 (SYS_1: 3.7, SYS_2:
4.1) according to table 4.

The most crucial problems in SYS_l in terms of
number of calls are: documentation laults (7 calls per
problem), operation faults (5 calls per problem), and
system software faults (5.7 calls per problem). In the
case of SYS_2, the most crucial problems are: docu-
mentation clarifications (4.9 calls per problem), opera-
tion requests (4.8 calls per problem), pre-sales requests
(4.5 calls per problem), and capability/feature
requests (4.9 calls per problem).

- by the wffort spent on-lin» (time spent talking to the
customer on the phone ...> Table 7):
The average effort.per problem spent oan-line is about
30 minutes.
In the case of SYS_1, most on-line effort is spent for
documentation problems (43 minutes per problem),
application software {aults (53 minutes per problem),
and system software faults (56 minutes per problem).
In the case of SYS_2 most on-line effort is spent for
pre-sales requests {105 minutes per problem)

- by the effort spent off-line (time spent other than talk-
ing to the customer on'the phone ---> Table 8):
The nv'l'érn?.gTeﬂ'&f’;i’er ‘problem spent off-line is about
45 minutes.
In the case of SYS_1, the most off-line effort is spent
for documentation prob!ems {117 mionutes per prob-
lem) and application software faults (330 minutes). In
the case of SYS_2, the most ofi-line effort is spent for
system software faults (180 minutes per problem).

(G3) Identify the best ways of applying the 20/80
rule to get the biggest savings and return on our
maintenance dollars:

Although we have no final results concerning this
matter, a careful interpretation of the results related
to goal (Gl) indicates that for instance better docu-
mentation, in the case ‘of SYS_1, could save a big per-
centage of maintenance problems. In a paper not
related to this study an analysw of software mainte-
nance changes is reported”; the authors aim at the
development of metrics for predicting where those
changes might occur. Such metrics might help save
dollars by concentrating resources on subsystems or

5207

modules which can be expected to require many
changes.

(G3) Identify criteria for when a product is ready
for release:

This question can only be answered if we know more
about the type of problems and effort spent in
engineering before release (question Q4) and about the
type and problems during field test (question Q5).

(G4) Identify features of product, documentation or

support that provide a wider customer satisfac-
tion:

This question can be addressed by designing a custo-
mer questionnaire. Some of the technical problems
definitely have impact on the customer’s satisfaction,
such as the high number of documentation-related
problems (in the case of SYS_1) or not being able to
keep promised dates for csllmg customers back.

(G85) Identify criteris for when s software product

should be rewritten rather than ma.mt.a.med

Unfortunately there are no data collected mdlcazmg
explicitly which parts (modules, subsystems) of a pro-
duct were affected (question Q26) or whether a problem
is due to a previous change (question Q8).

The only way to address this question by using the
currently available data is to evaluate the actual patch
where the actual lines changed are listed. A paper not
related to this study indicates that complexity metrica
characterizing the locality of changes might be a promis-
ing metric for characterizing the suitability of parts of &
software system for maintenance purposes’.

(G6) Identify metrics of customer satisfaction that

can be developed based upon existing data:

Based upon the results concerning goal G4 we hope to
be able to develop metrics for customer satisfaction.
Although it is too early to expect reliable metrics, candi-

date metrics might include aspects such as ability to
keep promised schedules for dealing with maintenance
problems or the frequency of similar (at least from the
customer s pomt. of V|ew) maintenance problem reporta.

(G'I) Develop orguniutxonal guidehnu for mtegut-

142

ing software quality metrics into the company’s
framework of deaign, development, and support:

1%

This goal represents the second step after having under-
itood the maintenance problems and identified possible
improvements. Procedures for monitoring quality and
productivity have to be established throughout the
development and maintenance of software products; the
prescribed data and metrics should be used for manage-
ment and’ motivation purposes and improved. Before
this problem can be addressed in a satisfactory way
many more and different analyses have to be performed;
in particular, data concerning the development phase of
products have to be collected in order to identify the
impact of the particular development process on main-
tainability. In & paper not related to this study
interesting approaches for predicting the required custo-
mer support for a particular system were presented®.
The prediction approach utilized development metrics
among others.

8. Measurement and Evaluation Tools

In order to apply the proposed quantitative assessment
approach practically, data collection and validation pro-
cedures as well as evaluation procedures need to be
automated. A tool system was proposed integrating many
tools already available in this environment. The whole tool
system needs to be implemented in a decentralized fashion
around a central data base. It has to provide different inter-
faces to different maintenance groups, limiting each group
only to data relevant to their specific task, presenting the
data in a belpful way. Independent of this company-specific
project, a research project at the University of Maryland is
siming at the development of a comprehensive approach to
sutomating measurement and evaluation in the context of
software projects which include support of the generation of
goals and questions and the project-specific interpretation of
measurement results®".

19. Conclusions

The objective of this study has been to demonstrate the
benefits of assessing the software maintenance process in a
quantitative way for the purpose of improvement. We have
been able to show the applicability of the
goal/question/metric paradigm to this complex problem
domain and derive first analysis results based on a very lim-
ited subset of available data. The long-range benefits can be
expected to be much more significant provided the derived
set of data are collected in the future and interpreted within
the proper context of maintenance questions and goals. In
this paper we have not addressed the psychological problems
involved in trying to introduce quantitative approaches into
& traditiopal maintenance environment. The interested
reader is referred to a book describing Hewlett Packard’s
experience (including psychological problems of motivating
project personnel and higher-level management) from intro-
ducin.g metrics into their daily software production environ-
ment .

It was even surprising to us, how many characteristics
of the maintenance process could be made visible by analyz-
ing the limited set of data available at the time. This visibil-
ity of characteristics might be helpful in communicating
problems in & more objective and convincing way.

5207

The analysis result underline the’importanes of viewing
software maintenance not as an isolated activity but as
integrated into the overall software life cycle. We can
improve the effectiveness of maintenance procedures by
purely analyzing the maintenance process. However, we will
never reduce the overall effort (and money) spent for mainte-
nance below a certain limit if we cannot make sure that
software products fulfill certain quality requirements at the
time of delivery (start of maintenance). Low quality products
will always cause maintenance problems. Accepting this fact
will lead us to establish quality criteria for a product to be
released to customers and, thereby, entering the maintenance
phase. As a consequence, developers could develop guidelines
for how to achieve those criteria and metrics to evaluate the
degree to which those criteria are actually met. Altogether
this would allow us to develop better maintainable products
in the first place or, at least, allow us to predict certain
maintenance problems at the beginning of maintenance.
Additional benefits of collecting maintenance data are to
provide a better basis for judging customer satisfaction, the
company’s image, and marketing

If we want to reduce the overall maintenance effort we
need to apply the assessment and improvement procedures
introduced in this paper to development as well as mainte-
nance of a product. This requires the availability of develop-
ment data (as implicated by the evaluation questions in sec-
tion 4) in addition to maintenance data. As’ long as we do
not assess the overall software life cycle, problems will shift
from design to coding, coding to testing, and development to
maintenance. It is a well known fact that the really serious

" Mmaintenance problems originate during the prior develop-

ment of the product; the identification of these real causes of

maintenance problems will result in significant improvements
of maintenance.

Acknowledgements

This study was supported by a grant from Burroughs Cor-
poration to the University of Maryland. The following people
from Burroughs and System Development Corporation sup-
ported this study in various ways: Kenneth Cain, Charles H.
Coulbourn, Joe Dormady, Al Freund, Michael A. Heneghan,
Bob Lesniowski, Mary Mikhail, Frank Star, and Christopher
Whitener. Jinn-Ke Jan from the University of Maryland
worked on this project as a graduate research assistant.

Beferences

1] V. R. Basili, "Quantitative Evaluation of Software
Engineering Methodology,” First Pan Pacific Computer
Conference, Melbourne, Australia, September 1985 [also
available as Technical Report, TR-1519, Dept. of Com-
puter Science, University of Maryland, College Park,
July 1985).

(2] V. R. Basili, H. D. Rombach, "TAME: Tailoring an Ada

Measurement Environment,” Proceedings of the Joint
Ada Conference, Arlington, Virginia, March 16-19,
1087, pp. 318-325.

Bl

(4]

(sl

(8]

V. R. Basih, H. D. Rombach, *Tailoring the Software
Process to Project Goals and Environments,” Proceed-
ings of the Ninth International Conference on Software
Engineering, Monterey, California, March 30 -April 2,
1987, pp. 345-357.

V. R. Basili H. D. Rombach, "TAME: Integrating
Measurement into Software Environments,” submitted
for publication to IEEE Transactions on Software
Engineering.

Victor R. Basili, Richard W. Selby, Jr., "Data Collec-
tion and Analysis in Software Research z2ud Mamage
ment,” Proc. of the American Statistical Association
and Biometric Society Joint Statistical Meetings, Phi-
ladelphia, PA, August 13-16, 1984.

V. R. Basili, D. M. Weiss, "Evaluating BSoltware
Development by Analysis of Changes: The Data from
the Software Engineering Laboratory,” Technical
Report TR-1236, Dept. of Computer Science, University
of Maryland, College Park, December 1982.

5207

iy

(8]

9]

{10]

(1

V. R. Basili, D. M. Weiss, "A Methodology for Collect-
ing Valid Software Engineering Data,” IEEE Transac-
tions on Software Engineering, Vol. SE-10, No.3,
November 1984, pp.728-738.

J. Chapin, G. Faidell, "Predicting Softwsre Customer
Support,” Proc. Conference on Software Maintenance,
Washington D.C., 1985, pp. 128-134.

"Robert B. Grﬂy, Deborah L. Caswell, "Software Meas-

ures; Establishing a Company-Wide Program,” to be
published as a bpok by Addflson Wesley, 1987.

D. A. Gustafson, A. Melton, and C. § ‘Hsieh, "An
Analysis of Software Changes During Maintenance and

Enhancement,” Proc. Conference on Software Mainte-
nance, Washington D.C., 1985, pp. 92-95.

H. Dieter Rombach, "A Controlled Experiment on the
Impact of Software Structure om Maintainability,”
IEEE Transactions on Software Engineering, Vol. SE-
13, No. 3, March 1987, pp.344-354.

€

i

[

[}

i

il

Resource Utilization during Software Development

+

Marvin V. Zelkowitz

Department of Computer Science, University of Maryland, College Park, Maryland

This paper discusses resource utilization over the life cycle of
software development and discusses the role that the current
“waterfal” model plays in the actual software ke cycle.
Software production in the NASA environment was analyzed to
measure thesa differences. The data from 13 different projects
were collected by the Software Engineering Laboratory at
NASA Goddard Space Flight Center and analyzed for simiari-
ties and differences. The results indicate that the waterfall
model is not very realistic in practice, and that as technology
infroduces further perturbations to this model with concepts ke
executable specifications, rapid prototyping, and wide-spec-
trum languages, we need to modify our model of this process.

1. INTRODUCTION

As technology impacts on the way industry builds
software, there is increasing interest in understanding
the software development model and in measuring both
the process and the product. New workstation technol-
ogy (e.g., PCs, CASE tools), new languages (e.g., Ada,
requirements and specification languages, wide-spec-
trum languages), and techniques (e.g., prototyping,
object-oriented design, pseudocode) are affecting the
way software is built, which further affects how man-
agement needs to address these concems in controlling
and monitoring a software development.

Most commercial software follows a development
cycle often referred to as the waterfall cycle. While
there is widespread dissatisfaction with this as a model
of development, there have been few quantitative studies
investigating its properties. This paper addresses this
problem and whether the waterfall chart is an appropri-
ate vehicle to describe software development. Other
models, such as the spiral model and value chaining,
have been described, and techniques like rapid prototyp-
ing have been proposed that do not fit well with the
waterfall chart [1, 2]. This paper presents data collected
from 13 large projects developed for NASA Goddard

Address correspondence to Professor Marvin V. Zelkowitz,
Department of Computer Science, University of Maryland, Col-
lege Park, MD 20742.

The Journal of Systems and Software 8, 331-336 (1988)
© 1988 Elsevier Science Publishing Co., Inc.

5207

Space Flight Center that shed some light on this model of
development. :

Data about software costs, productivity, reliability,
modularity, and other factors are collected by the
Software Engineering Laboratory (SEL), a joint re-
search project of NASA/GSFC, Computer Sciences
Corporation, and the University of Maryland, to im-
prove both the software product and the process for
building such software [3]. It was established in 1976 to
investigate the effectiveness of software enginecring
techniques for developing ground support software for
NASA [4].

The software development process at NASA, as well
as in most commercial development environments, is
typically product-drive and can be divided into six major
lifecycle activities, each associated with a specific ‘‘end
product’™ [5, 6]; requirements, design, code and unit
test, system integration and testing, acceptance test, and
operation and maintenance. In order to present consist-
ent data across a large number of projects, this paper
focuses on the interval between design and acceptance
test and involves the actual implementation of the system
by the developer.

In this paper, we will use the term **activity’’ to refer
to the work required to complete a specific task. For
example, coding activity refers to all work performed in
generating the source code for a project, the design

-activity refers to building the program design, etc. On

the other hand, the term ‘‘phase’” will refer to that
period of time when a certain work product is supposed
to occur. For example, coding phase will refer to that
period of time during software development when
coding activities are supposed to occur. It is closely
related to management-defined milestone dates between
the critical design review (CDR) and the code review.
But during this period other activities may also occur.
For example, during the coding phase, design activity is
still happening for some of the later modules that are
defined for the system and some testing activity is
already occurring with some of the modules that were
coded into the source program fairly carly in the
process.

331

0164-1212/88/33.50

332

In the NASA/GSFC environment that we studied, the
software life cycle follows this fairly standard set of
activities [7}):

1. The requirements activity involves translating the
functional specification consisting of physical attrib-
utes of the spacecraft to be launched into require-
ments for a software system that is to be built. A
functional requirements document is written for this
system.

2. A design activity can be divided into two subactivi-

ties: preliminary design activity and detailed design
activity. During preliminary design, the major
subsystems are specified, and input-output interfaces

and implementation strategies are developed. During
detailed design, the system architecture is extended
to the subroutine and procedure level. Data structures
and formal models of the system are defined. These
models include procedural descriptions of the sys-
tem; data flow descriptions; complete description of
all user input, system output, input-output files, and
operational procedures; functional and procedural
descriptions of each module; and complete descrip-
tion of all internal interfaces between modules. At
this time a system test plan is developed that will be

used later. The design phase typically terminates

with the CDR.
3. The coding and unit test activity involves the
translation of the detailed design into a source

program in some appropriate programming language

(usually Fortran, although there is some movement to
Ada). Each programmer will unit test each module
for apparent correctness. When satisfied, the pro-
gramme,rrrelcascs the module to the system libraian
“for configuration control.
4. The system integration and test actmty validates
that the completed system produced by the coding
and unit test activity meets its specifications. Each

M. V. Zelkowitz

dynamics software is usually not **mission criti-
cal,”” in that a failure of the software dos not mean
spacecraft failure but simply that the program has
to be rerun. In addition, many of these programs
(i.e., spacecraft) have limited lifetimes of 6
months to about 3 years, so the software is not
given the opportunity to age.

The waterfall model makes the assumptions that all
activity of a certain type occurs during the phase of that
same name and that phases do not overlap. “Thus all
rcqulrements for a project occur during the requirements
phase; all design activity occurs during the design phase.
Once a project has a design review and enters the coding
phase, then all activity is coding. Since many companies
keep resource data based on hours worked by calendar
date, this model is very easy to track. However, as
Figure 1 shows, activities overlap and do not occur in
separate phases. We will give more data on this later.”

2. THE WATERFALL CHART IS ALL WET

Table | summarizes the raw data on the 13 projects

analyzed in this paper. They are all fairly large flight
dynamics programs ranging in size from 15,500 lines of
Fortran code to 89,513 lines of Fortran, with an average

size of 57,890 lines. The average work on these projects
was 8.90 staff-months, thus, all represent significant
effort.

In most organizations, weekly time sheets are col-
lected as part of cost accounting procedures so that phase
data are the usual reporting mechanism. However, in the
SEL, weekly activity data are also collected. The data

consist of nine possible activities for each component

Tabie 1. Project Size and Staff-Month Effort

module, as it is completed, in integrated into the Project Size (lines Total effort Stff-
. X . =, number of code) hours* months
growing system, and an integration test is performed
to make sure that the entire package performs as t 15,500 ° 17,715 116.5
expected. Functional testing of end-to-end system 2 50,911 12,588 82.8
capabilities is performed according to the system test i gé . m {(7) giz ‘_l’§ (l)
plan developed as part of. pfelinlimry design. 5 25731 1.514 100
5. Inthe acceptance test activity, a separate acceptance 6 67,325 19,475 128.4
test team develops tests based on functional specifica- ; 66,260 17.997 1184
tions for the system. The development team provides ' 55237 15,262 100.4
assistance to the acceptance test team. 10 75,420 5192 38.1
6. Operation and maintenance activities begin :; g:g;g :i ;2)% gz.:
after acceptance testing when the system becomes 13 85,369 14.309 941
operational. For flight dynamics software at Average 57,890 13.522 9.0
NASA, these activities are not significant with
respect to the overail cost. Most s.o.ftware that is + Al technical effort, including prog and management time.
produced is highly reliable. In addition, the flight ® Raw dats not available in data base.
2-36

5207

N I

{

L[]

Resource Utilization

333

REQUIREMENTS

DESIGN

|
|
|
{
i
|
|
I
|
|
l
|
l
|
Figure 1. Typical life cycle. |
|
|
i
|
|
!
|
|
[
|
I
|
|

CODE

INTEGRATION

] |
ACCEPTANCE TEST

OPERATION

Life cycle Calendar Time

(c.g., source program module). In this paper, these will
be grouped as design activities, coding activities (includ-
ing unit test), integration activities, acceptance testing
activities and other. Specific meetings, such as design
reviews, will be grouped with their respective activity
(e.g., a design review is a design activity, a code
walkthrough is a coding activity, etc.)

Table 2 classifies the data presented in this paper.
Each column represents a type of work product (design,
code, test). The ‘‘by phase’” part represents the effort
during that specific time period, while the “‘by activity™
part represents the actual amount of such activity.
“*Other’’ does not enter into the ‘‘by phase’* table, since
these activities occur during all phases. At NASA, 22%
of a project’s effort occurs during the design phase,
while 49% is during coding. Integration testing takes
16% while all acceptance activities take almost 13%.
(Remember that requirements data are not being col-
lected here. We are simply reporting the percentage of
design, coding, and testing activities. A significant
requirements activity does occur.)

By looking at all design effort across all phases of the
projects, we see that design activity is actually 26% of

5207

>

the total effort rather than the 22% listed above. The
coding activity is a more comparable 30% rather than
the 49% listed by phase data, which means that the
coding phase includes many other tasks. ‘‘Other”
increased from 12% to 29% and includes many time-
consuming tasks that are not accounted for by the usual
life-cycle accounting mechanism. Here, ‘‘other’’ in-
cludes acceptance testing as well as activities that take a
significant effort but are usually not separately identifi-
able using the standard model. These include corporate
(not technical) meetings, training, travel, documenta-
tion, and various other tasks assigned to the personnel.
The usual model of development does not include an
*other,"” and this is significant since almost one-third of
a project’s costs are not effective at completing it. More
on this later.

The situation is actually more complex, since the
distribution of activities across the project is not re-
flected in Table 2. These data are presented in Tables 3-
5. Only 49% of all design work actually occurs during
the design phase (Table 3), and one-third of the total
design activity occurs during the coding period. Over
one-sixth (10.3% + 6.4%) of all design occurs during

334

Table 2. Development Effort

M. V. Zelkowitz

Table 3. Design Activity During Life-Cycle Phases

Project Design Code Imegraﬁon Accept. test Project Design Coding Integration Accept. test
number (%) (%) at. (%) and other (%) number phase (%) phase (%) test (%) phase (%)
By Phase H 41.8 339 10.0 143
1 20.6 8.6 16.5 4.3 2 53.6 31.2 9.2 6.0
2 16.2 48.4 19.3 16.2 3 333 37.1 19.7 9.9
3 218 479 17.4 12.9 4 45.3 32.6 22.0 0.1
4 5.9 395 24.5 0.1 h 17.4 69.1 13.5 0.0
5 18.2 68.8 13.0 0.0 6 58.9 30.7 4.3 6.2
6 16.3 48.6 10.9 24.3 7 63.9 15.3 6.8 14.1
7 19.0 50.4 149 15.7 8 28.1 56.9 7.1 8.0
g 29 48.4 13.0 158 k4 61.8 8.2 0.0 0.0
9 2.6 68.3 8.1 1.1 10 57.8 27.2 7.0 8.0
10 24.4 44.6 20.2 10.8 I 58.7 13.7 16.67 10.9
11 2.7 394 214 16.5 12 58.9 32.8 59 24
12 16.9 53.1 10.9 19.1 13 60.5 247 11.9 2.9
13 282 435 201 82 Average 49.2 34, 103 6.4
Average 22.0 49.2 16.2 12.7
By Activity o ’
1 17.4 16.4 9.9 56.3 with the other category removed. As can be seen, design
2 30.1 394 20.8 9.7 took about one-third of the development effort and
: B3 3 s n2 varied between a low of 25% and a high of 47%—a
5 310 355 9.4 24.1 factor of almost 2. On the other hand, coding took an
6 14.9 21.8 24.0 39.2 average of 42% of the relative effort and varied between
; f?g fg'g ';'g 222 36% and 49%—a factor of only 1.36. Testing ranged
9 3.3 435 18.9 6.4 from a low of 7.5% to a high of 39.5%, with an average
10 38.2 373 6.1 18.4 of 22%, for a relative factor of over 5.
}.1, %g; 24]5:(5) ;Z_'g 2§:; From Table 2, the “‘other”’ category was 29% of the -
13 32.6 36.3 15.6 15.6 effort on these projects, and of the 13 measured projects,
Average 25.6 30.5 15.0 289 other activities consumed more than one-third of the

testing when the system is **supposed’” to be finished. In
almost one-third of the projects (4 out of 13), about 10%
or more of the design work occurred during the final
acceptance testing period.

As 10 coding effort, Table 4 shows that while a major
part (70%) does occur during the coding phase, almost
one-quarter (16% + 7%) occurs during the testing
periods. As expected, only a small amount of coding
(7%) occurs during the design phase; however, the table
indicates that some coding does being on parts of the
system while other parts are still under design. These
data have the widest variability as a range from 0%
(project 10) to over 22% (project 3).

Similarly, Table 5 shows that significant integration
testing activities (almost one-half) occur before the
integration testing period. Once modules have been unit
tested, programmers begin to piece them together to
build larger subsystems, with almost half (43%) of the
integration activities occurring during the coding phase.

Due to the wide variability of the “other”’ category in
Table 2, Table 6 presents the same data as relative
percentages for design, coding, and integration testing

5207)

effort on six of them. The other category consists of
activities such as travel, completion of the data collec-
tion forms, meetings, and training. While these activities
are often ignored in life~cycle studies, the costs are
significant. Table 7 presents the distribution of other

Table 4. Coding and Testing Activity During Life-Cycle
Phases

Project Design Coding Integration Accept. test
number phase (%) phase (%) test (%) phase (%)

1 1.4 78.3 1.3 9.1
2 0.0 7.8 19.7 7.5
3 22 56.2 1.8 9.8
4 16.4 585 25.1 0.1
5 21.2 68.7 10.1 0.0
6 0.5 I 1.3 10.9
7 1.3 73.9 15.6 9.2
8 14.7 54.7 21.0 9.7
9 52 91.1 3.1 0.6
10 0.0 73.0 s 45
11 2.2 70. 20.1 7.2
12 0.3 74.8 8.3 16.6
13 4.6 63.6 26.9 49
Average 6.9 70.3 15.9 6.9

T

1 4

Resource Utilization

Table 5. Integration Activity During Life-Cycle Phases

335

Table 7. Other Activities Effort in Each Phase

Coding
Project Design and unit . Integration Accept. test
number phase (%) phase (%) test (%) phase (%)

Coding
Project Design and testing Integration Accept. test
number phase (%) phase (%) test (%) phase (%)

"

1 0.0 178 274 54.7
2 0.0 452 30.1 247
3 6.1 53.9 21.1 18.9
4 21.0 193 39.7 0.0
s 28.4 71.0 0.6 0.0
6 1.0 40.9 17.6 40.5
7 0.5 4.1 26.3 19.2
8 2.9 338 19.2 4.1
9 0.0 66.4 29.2 44
10 0.0 23.1 41.5 5.5
i 0.0 36.4 5.1 8.5
12 0.1 32.7 224 4.8
13 1.5 49.5 28.8 20.2
Average 4.7 434 26.1 25.8

i 233 322 18.1 265
2 0.0 9.1 26.4 64.6
3 21.7 47.8 16.8 13.7
4 46.2 30.2 236 0.0
5 11.0 67.7 213 0.0
6 8.2 4.2 9.0 28.7
7 144 516 14.5 19.5
8 26.5 471.7 11.4 14.4
9 15.9 65.5 18.7 0.0
10 124 30.2 359 215
11 214 322 18.9 27.6
12 47.3 46.6 4.6 1.5
13 425 30.0 12.7 14.9
Average 23.1 41.2 17.8 17.9

activities across all phases. While such effort varies
widely from project to project, no general trends can be

observed, except that it does take a significant effortasa .

percent of total costs.

3. CONCLUSIONS

Using data from the SEL database, it seems that the
software development process does not follow the
waterfall life cycle but appears to be more a series of
rapids as one process flows into the next. Significant
activities cross phase boundaries and do not follow
somewhat arbitrary milestone dates. The classical prod-
uct-driven model has many shortcomings.

In the SEL environment, as well as elsewhere, other
classes of activities take a significant part of a project’s
resources. At almost one-third of the total effort, it

Table 6. Relative Activity

Coding
Project Design and unit
Integration number act. (%) act. (%)
act. (%)
[39.9 375 2.6
2 333 437 23.0
3 399 30.8 9.3
4 4.0 46.3 T97
5 40.8 46.8 12.3
6 4.6 359 39.5
7 335 4.8 23.6
8 322 40.7 27.1
10 46.8 457 1.5
1t 37.8 40.1 2.1
12 25.2 49.4 25.5
13 ’ 386 43.0 18.4
Average 36.2 42.2 21.6

5207

might be part of an explanation of why software is
typically over budget. Estimating procedures often use a
work breakdown structure where the system is divided
into small pieces and estimates for each piece are
summed up. Inclusion of a significant ‘‘other’ usually
does not occur.

Newer technology is affecting this traditional model
even more. In one NASA experiment, a prototype of a
project was developed as part of the requirements phase
{8]. In this case, 33,000 lines of executable Fortran were
developed at a cost of 93.1 staff-months—already a
significant project in this SEL environment. When
viewed as a separate development, the prototype had a
life cycle typical of the data presented here, but if
viewed as only a requirements activity it puts a severe
strain on existing models.

Current models do not handle executable products as -

-part of requirements. Other questions arise: Are Ada

package specifications design or code? Are executable
specification languages specification or design? When
does testing start?

It is clear that our current product-driven models need
to be updated. Other models, such as the spiral model,
which is an iterative sequence of risk-assessment deci-
sions, or value chaining, which addresses value added
by each phase, are alternative approaches that need to
enter our vocabulary and be further studied for effective-
ness.

ACKNOWLEDGEMENT

This work was partialy supported by grant NSG-5123 from NASA
Goddard Space Flight Center to the University of Marylend. Judin Sulat
provided maat of the analysis of the data used in this repart. We also
wish to acknowledge the heip of Frank McGarry of NASA/GSFC in
collecting and interpreting the data used here.

336

REFERENCES

5207

B. Boehm, A Spiral Model of Software Development and
Enhancement, ACM Software Eng. Notes 11(4) 2242,
1986.

. B. Bochm, Improving Software Productivity, Computer

20(9) 43-57, 1987.

. F. E. McGarry, et al., Guide to Data Collection, NASA

Goddard Space Flight Center, Code 552, Greenbelt, MD,
August 1982.

. V. R. Basili and M. V. Zelkowitz, Analyzing Medium-

Scale Software Development, 3rd International Confer-
ence on Software Engineering, Atlanta, pp. 116-223,
1978.

5.

6.

7.

M. V. Zelkowitz

A. Wasserman, Software Engineering Environment,
Adv. Compur., 22, 110-159, 1983,

M. W. Zelkowitz, Perspective on Software Engineering,
ACM Comput. Surv., 1(2), 198-216, 1978.

F. E. McGarry, G. Page, et al., Standard Approach to
Software Development, NASA Goddard Space Flight
Center, Code 552, Greenbelt, MD, September 1981.

- M. V. Zelkowitz, The Effectiveness of Software in

Prototyping: A Case Study, ACM Washington Chapter
26th Tech. Symposium, Gaithersburg, MD, pp. 7-15,
1987.

|

€ U i o

i

il

SECTION 3 — MEASUREMENT ENVIRONMENT
STUDIES

1. 1

i

WHMN

.

l;‘ w; |

ECTION = EMENT ENVIRONMENT IE

The technical papers included in this section were originally

prepared as indicated below.

5207

"Generating Customized Software Engineering Infor-

mation Bases from Software Process and Product Spec-

ifications," L. Mark and H. D. Rombach, Proceedings
he 22nd Annual Hawaii International nferen

on System Sciences, January 1989

"Software Process and Product Specifications: A
Basis for Generating Customized SE Information

Bases," H. D. Rombach and L. Mark, Proceedings of
h 2n al Hawaii International nferen n

System Sciences, January 1989

"The TAME Project: Towards Improvement-Oriented
Software Environments," V. R. Basili and

H. D. Rombach, IEEE Transactions ¢on Software
Engineering, June 1988

"Validating the TAME Resource Data Model,"

D. R, Jeffery and V. R. Basili, Pr in f th
10th Internation nferen n ftwar
Engineering, April 1988

3-1

Generating Customized Software Engineering Information Bases
from Software Process and Product Specifications

Leo Mark and H. Dieter Rombach

Department of Computer Science
University of Maryland
College Park, MD 20742

Software engineering is a challenging new application area for
information bases. The new challenges are twofold: bow
software engineering processes and products can be properly
modeled; and, bow such processes and products can be mir-
rored naturally within an information base. Meeting these
challenges requires software engineering and information base
research. Our "Meta Information Base for Software Engineer-
ing® project at the University of Maryland represents such a
joint research effort. The idea of our approach is to generate
customized software engineering information bases from formal
specifications of software engineering processes and products.
The three central research topics are: (i} develop a soltware
process and product specification language which permits all
the information necessary to understand, control and improve
any given software engineering process; (ii) develop s meta
information base schema which sutomatically generates an
information base structure given a software process and pro-
duct specification; and (iii} develop a mapping between the
software epgineering oriented and information base oriented
models. The generator approsch acknowledges the Tact that
software engineering changes not only from epvirooment to
environment, but also from project to project. If an informs-
tion base is expected to truly mirror and support a given
software engineering project, it needs to be tailorable to the
changing characteristics of the software project itself. The gen-
erator based approach suggested by our project seems to be the
patural approach to satisfy this important peed.

This paper presents the information base oriented part of our
joint project . It discusses how to represent a set of software
process and product type specifications in & database and how
to use these to automatically generate database support for
process executions and product instances.

Introduction

When we began our research on a Meta Information Base for
Software Engineering one of the first future research topics we
identified was object-oriented database systems. However, as
the reader may already have noticed, the words object—oriented
were nol mentioned in the title or abstract of this paper. While
a number of chject-oriented database systems have been pro-
posed in the past few years [Dittrich 86|, there seems to be

® We bave also submitted s paper dis-ussing the soft ware engineering orieated part of
our projeet for the *Softwars Engineering Processes: Models snd Analysia® track of
this same conlerence [Rombach 8]

little consensus as to what such & system should be. Although

~ our research will eventually lead to our version of ap object-

oriented database system, we are currestly using and extending
existing relational database technology, trying to find out bow
far it will take us. Others, lollowing the same approach, have
extended the relational model with more semantics [Codd 79),
provided better support for complex objects [Dadam 86, and
extended the data definition capabilities with support for type
inheritance |Borgida 88, The common goal of these efforts,
best described in [Carey 88], is to use and extend existing rela-
tional technology, but to retain< a powerful non-procedural
query language.

Our joint project is based on the following framework for a
Software Engineering Environment [Rombach 88;:

USER INTERFACE

o a

v v
PLANNING EXECUTION|

ry r'y

v ¥

INFORMATION BASE INTERFACE

INFORMATION BASE

Framework for SEE

This paper concentrates on the following two information base
issues:
- the represention of a formal specification of s set of
software engiucering process and product type deserip-
tions using an extended relational data model, and

1

"
1Y

— the sutomatic generation of information base support for
software process executions and product instances based
on their type descriptions.

As a basis for addressing the first issue we shall, in section 2,
briefly summarize the set of requirements for a software process
and product specification language (as described in our com-
panion paper [Rombach 88)). In section 3, we introduce s
graphical formalism for the extended relational model. In sec-
tion 4, we show the representation of formal specifications.
The notion of a Seif-Describing Database System [Mark 85,
briely described in section 5, is the basis for the generator
spproach discussed in section 6.

Requirements for a Software Process and Product
Specification Language

We distinguish between very general requirements which ack-
nowledge the basic nature of software processes and more
specific requirements [Rombach 88]. -

In this section we shall restrict ourselves to listing the specific
requirementa for a software process and product specification
language from a planning perspective and from an exe-
cution perspective.

Since we want formal specifications in this language
represented in our software engineering information base, the
specific requirements, from a planning perspective, have direct
bearing on the schema design of the information base. Simi-
larly, since we want to automatically generate information base
support for software process executions and product instances
based on the formal specifications, the specific requirements,
from execution perspective, also have direct bearing on the
schema design. -

From a planning perspective, the specific requirements for
the specification language include the ability to specify:

1. process, product, and constraint types

2. produce (output) and consume (input) relationships
between product and process types

3. control flow relationships between process types (sequence,
slternation, iteration, and parallelism)

4. structural relationships between product types (sequence,
alternation and iteration)

5. dependency relationships between process types (Process
P1 is dependent of process P2 if every execution of P2
triggers a simultaneous execution of P1. Typically, meas-
urement processes are dependent on the construction
processes which they are supposed to monitor.)

6. pre—conditions and post—condition relationships between
constraint and process/product types (A pre—condition of
8 process is a constraint imposed upon initiation of this
process; a post—ondition of a process is & constraint
imposed upon termination of this process; a condition of a
product is a constraint imposed upon this product.)

7. aggregation and decomposition of process and product
types

8. generalization and specialization of process and product.

types

9. constructive as well as analytic (measurement-oriented)
product and process types

10. different roles (Different roles are performed in a software
project such as design role, test role, quality assurance
role, or management role. Roles define views or perspec-
tives of (a subset of) the processes and products relevant
to a particular project. Type and number of roles may
change from project to project.)

11. time (relative and sbsolute) & space {software structure,
versions, configurations) dimensions

12. dislogues between processes (including buman beings)

tn section 4 we design the schema for the meta information
base to meet most of these requirements.

The specific requirements from an execution perspective
for n software process and product specification language
include the ability to handle

1. the instatiation (creation of objects) of process, product
and constraint types

2. long-term, nested transactions (Many software engineer-
ing processes such as designing mav stretch over weeks or
months; in addition, they may contain nested activities.)

3. varying degrees of persistence (Some information needs to
be kept forever, some only for the duration of the project,
and others only until s new instance {e.g. product ver-
sion) has been created.)

4. tolerance of inconsistency (Because of the long-term
nature of software engineering processes, it might be
necessary to siore inlermediate information that does not
yet conform with the desired consistency criteria)

5. dynamic types (type hierarchies) (an object of type pro-
duct {e.g, a compiler developed during one project) may
be used as an object of type process during a future pro-
ject.)

6. poo-determinism due to user interaction

7 dypamic changes of process specification types (It is
impossible to plan for all possible (non-deterministic)
results produced by human beings in advance. However,
we would like to react to those situations by dynamically
re-planning during execution. Although it is pot a prob-
lem to change a specification during the planning stage. it
might be a problem to change the specifications during
execution while preserving the current execuytion state.)

8. back-tracking due to execution failures

9. the organization of historical sequences of product objects
and process executions -

10. the enormous amounts of interaction between parallel
activities

11. the role-specific interpretation of facts (The same process
and product facts might require different interpretation in
the context of different roles.)

12. the triggering of actions {based on pre-conditions and
post conditions)

The list of execution-point-of-view requirements is heavily
influenced by the results of a working group during the 4th
International Workshop on Process Specification (More-

‘tonhampstead, UK, May 1988), chaired by Tom Cheatham

[IWSPS 88]. Some of these requirements will be meet by our
automatically created information base, however many of them
define topics for future research on information bases.

Graphical Formalism for an
Extended Relational Model

To create a schema for s meta information base that com-
pletely and precisely mirrors the fundamental software
engineering concepls, we need a powerful data model A daia
mode! consists of a language for defining data structures, s
language for defining constraints, and a language for data
manipulation and query processing. We shall primarily concen-
trate on the data structure language in this paper. This
language is an extended version of the relational mode] with s
number of concepts borrowed from semantic data models and
object oriented data models.

The language supports two kinds of uniquely named domains:
lexical and nos-lexical

Noo-lexical domains (full circles) model object-sets and lexical
dorsins (broken circles) model object-name-—sets. We shall
almost entirely be wusing non-lexical domains in the
specification. The reason is that we concentrate oo modeling
the fundamental software engineering concepts and their rels-
tionships, and postponing the aspects of bow the concepts are
lexically described, represented, and referenced. In an imple
mestation the non-lexical domains will be represented by sur-
rogates [Hall 76, which are system geoerated, internal, unique
identifiers for objects. ’

Since surrogate values sre internal to the system and invisible
to the user we are primarily modeling the invisible part of the
meta ioformation base, and ignoring the visible part. Several
important observations are related to the use of surrogates:

1. Surrogates allow us to model aggregate objects fairly
easily while preserving normalized relation representa-
tions. Non-procedural query languages, like relational
calculus, can be used for query processing without change.
If » nested relation representation [Thomas 86) was used,
sllowing attributes with set values, we would violate first
pormal form representations and we would be forced to
use a powerset calculus.

2. Surrogates allow us to mode! generalization jn a straight
forward manner [Codd 79, however s slight generaliza-
tion of relational calculus is needed if we want Lo utilize
inheritance in queries.

3. Asfar as a database system is concerned, anything stored
as an instance of a lexical object type is primitive, and all
the database system can do is insert, delete, or retrieve it.
Surrogates are idea] for modeling the structure of new
user defined object types, providing a means for extensi-
bility. However, the complete structure of an object
must be explicitly represented if the user wants to use the
relational caleulus 1o manipulate and answer questions
about the structure of the object.

4. Breaking down everything to obtain an explicit represen-
tation of the internal structure of objects may result in .
inefficiency from a system point of-view. However,
current research on view cache and incremental computa-
tion models show very promising results [Roussopoulos
87]. Inefficiency from a user point—of -view can basically
be ignored because relational views can be used to define a
higher level query interface when needed.

Ab arrow between two domains represent an is-a relation
type. In the example below, the object type O bas subtypes O

and 02A An is-a relation type represent a total function from
the subtype to the supertype. The set of is-a relation types
define a directed acyclic graph on the set of domains. Various
tules for inberitance may be sdopted, however, inheritance
from multiple supertypes is bard to define properly |Borgida
88].

Relation types are uniquely named and are répresente& by the

. notation below. Attributes model the roles of the
" corresponding domains i relations Attribute pames may be

omitted, in which case the corresponding domain name is used.
However, attribute names must be unique within relations.

Identifier constraints (double beaded arrow under an attribute
combination) model partial fupctions from an attribute combi-
nation to each of the other attributes in the relavion

ATTRIBUTE_ | ATTRIBUTE_ ATTRIBUTE
NAE,

Rather than using relational normalization, we aim at identify-
ing atomic facts. Multiple atomic facts may later be combined
into larger relations while preserving at least Boyce-Codd Nor-
mal Form (BCNF). As is customary in object-role data models
we shall model all concepts in terms of domains. The role of
the relations is therefore reduced to capture the aggregates
that form the concepts and to relate the concepts. An impor-
tant advantage of our specification language over the tradi-
tional relational data definition language is that it clearly indi-
cates that only attributes over the same domain can be used as
a basis for entity joins between relations. The relational model
traditionally only supports domains of primitive types and does
not support a strong typing concept.

Although some types of aggregate objects, e g abstract syntax
trees, could be conveniently represented by recursively defined
relation types, whatever that is, we have not considered such
an extension of dur model because databases have a hard time
managing instances that are not all of the same structure and
size.

Our approach clearly allows us to yse the relational calculus
for data manipulation and query processing.

A significant advantage of this is that 1 powerful constraint
definition capability may be based on the relational calculus.

3-4

=a
-

wil Wi CJ1 1T

il

Although important, we shall postpone further discussion of
the query language snod the copstraint capability to s later

paper.

Representation of Process and Product
Specifications

Before we start, let it be perfectly clear that we are dealing with
three levels of information. What we are aboul to design in
this section s & achema - or rather a mela-schema - that
describes all process ond product descriptions thal can be
defined in the specification language iniroduced in [Rombach
88/.

Th/e data stored under this schema are, in other words, process
and product descriptions and can in lurn be inlerpreted as the
schema for process ezeculions and product instances sunder
these descriptions. This tssue is diacussed in sections 5 and 6

The two fundamental concepts in the specification language are
proceas descriptions and product descriptions.

Process descriptions and product descriptions are modeled by

the two domains shown below.

Instances of process descriptions and product descriptions are
tied to their type through the insert operation. Therefore, a
"member® relationship need not be modeled explicitly.

‘We use the concept process recursively in two ways.
First, a process description may be an aggregate of a set of
component process descriptions. In an aggregation we form a
concept from existing concepts. The phenomena that are
members of the new concept’s extension are composed of
phenomena from the extensions of the existing concepts.
Second, a process description may be a generalization of & more
specific process description. In a generalization we form a new
concept by emphasizing common aspects of existing concepts,
but out special aspects. The phenomena that are members of
the existing concepts are all members of the new concept, and
they therefore inherit all the attributes of the members of the
new concept. Aggregation and generalization are classical
themes in object oriented databases [Smith 77].

The aggregate process descriptions are modeled below. A
process description may be reused in many aggregate process
descriptions. Aggregate process descriptions may bave multiple
levels, but cannot be defined recursively, (i.e. a process
description cannot contain itsell as & component at any level).
This coastraint is not modeled below.

As modeled by the second relation type below, some but not all
process descriptions may have names. We have modeled these
names to be universally unique. Other models are of course

possibile.

"

Within aggregate process descriptions, the component process
descriptions may be sequential, alternative, parallel. or
iterated Only process descriptions that are parts of an aggre-
gate process description can be used in any of these ordering

"schemes. Since process descriptions may be reused in many
"aggregate process descriptions, the ordering must be aggregate

process description specific. Our approach is to mode! the res-
trictions imposed by the ordering schemes Since parallelism is
not & restriction we need not model it. Sequence is, for con-
venience, assumed to be represented in & relation where the
tuples are ordered on the aggregate process descriptions and
subsequently on the component process descriptions. The order
of the component elements will, of course, depend on the lexi-
cal representation of their names since it makes no sense w

order on the non-lexical surrogate values. Iteration will simply
be modeled as & "goto®. :

METue_procws_émarigt_ ey

L ond
oy

—~T1 = [=]

The generalized process descriptions are modeled below.
Notice that a process description may be in more that one gen-
eralization, (i.e., we model a generalization net rather than a
generalization hierarchy). However, the generalization net can-
pot contain cycles; this constraint is not modeled below. This
model will provide the information needed to support any
inheritance scheme we may want to adopt.

Erornlland_ provess dascripl Py
S

To complete the two recursive definitions, we must model the
fact that an aggregate process description and 8 generalized
process description are themselves process descriptions.

This mode] will provide the information needed to support any
inheritance scheme we may want to adopt.

We use the concept product recursively in two ways.
First, » product description may be sn aggregate of s set of
component product descriptions Second, s product description
may be s generalization of more specialized product descrip-
tions.

As modeled by the second relation type below, some but not all
product descriptions msy have names. We have modeled these
names to be universally unique. Other models are of course
possibile.

We model the generalized product descriptions below. As
with generalized process descriptions, a product description
may be reused in more that one generalization, (i.e., we model
a generalization net rather than a generalization hierarchy).
However, the generalization net cannot contain cycles; this con-
straint is not modeled helow.

This model will provide the information needed to support any
inheritance scheme we may want Lo adopt. :

To complete the two recursive definitions, we must model the
fact that an aggregate product description and s generalized
product description are themselves product descriptions.

proden '
proded
duaigs Smaee

To summarize, we have now modeled bow aggregate and gen-
eralized process ind product descriptions can be defined from
other process and product descriptions. Since process and pro-
duct description instances are tied to their respective type by
insertion, we can summarize our complete model (the dashed
arrows indicate *member™ relatiooships that are maintained
through insertion). '

is i3 ¥
worng S process - sagrepsts
process Srosess
descript aggregation
desenipt l'ﬂ'?[ﬂlgtlnoa 1p desermpt
. dun*'u»on ordenng
generalized s ‘ proh“ A ereaate
roc! J-
process deseript aggregation proress
deacnpl generalization agiance descript
nsLance - - - jnaiasee -
ordering
- . e Y)
generalized - aegregsie
product product asregaton Sroduet
i b e
descript generslizatioe descript bt
. chu»euuou orderiag .
eaerali 23 .
¢ pr:::l:: ¢ - produet <4 '::::::'
descript :
ﬁmrlpt '"'2““““ instance tearegstion deseript
instance - - isstance
ordenag

All the non-lexical domains are represented by surrogates.
Any information about the objects modeled by these syrro-
gates, including their lexical representation, will be conpected
to the surrogates.

The fundamental relationship between process executions and
product ipstances is that 3 process execution uses » set of
product instances as input and produces u set of pro-
duct instances as output. To model this a. the process and
product description level. we need the following relation. The

i/o domain consists of the values {i. o, io}.

Ve
daTTplion dmcripiine
- —
e
deseripiog Gapcrplins

Some software methodologies require detailed i o information
for each element in a dorument rather than for the document
as a whole. This requirement is supported by our model
through the use of the recursive definition of process and pro-
duct descriptions.

The concept of mapping is introduced to allow process and
product descriptions in a project using one software methodol-
ogy to be compared to process and product descriptions in a
project using a different software methodology. We must pro-
vide data structures that help the software engineer define
mappings between process and product descriptions in different
software methodologies. We mode! a rudimentary mapping
definition capability below.

3-6

1. t

wiil

com
L J

g

ORIGINAL PACE IS
OF POOR QUALITY

pouc_dmrt_unp pné_Gmuis_mp

1 1 1]

Before & mapping can be defined, we may have to use the
recursive process and product definition capability in order to
bring the concepts we want to compare Lo the same level of
abstraction. Once this is dope we cap use the mapping
definition capability.

The notion of user views is very important. User views are
peeded for managers, designers, programmers, etc. In general,
user view is defined as a copsistent collection of product snd
process descriptions together with a collection of product
instances and data about process executions that conform to
the descriptions and are relevant to a particular project.

proc_daarps view prod_dmaript_vew

The notion of s process pre—constraint and post—
constraint on a database is as important as the notion of a
control mechanism in software engineering. Since different
pre—constraints and post—constraints may apply to the same
process decription used in different aggregate process descrip-

tions, we have to tie the relationship between process descrip-

HER. *LERMIL N 'S MBRLHSHlepAgarrsate process descrip-

pre--commnis

Like static constraints in a database, we think about the
notion of product constraint as something independent from
Lthe processes that use and produce the product. We therefore
model product constraints as follows:

We have introduced a large number of database constraints
between the model of process and product descriptions and the

-instances of these descriptions. The most natural way of main-

taining consistency between the surrogates in an aggregation
and generalization hierarchy is through the use of a well
defined set of operations for insertion and deletion.

"Maintaining eonsistency between the lexical representa-
"tions is a much more complicated problem. Fortunately,

part of this problem has a very elegant solution.

“To control the consistency of lexical representations we
- only store the lexical representations of the atomie process

and product descriptions, an object is atomic if it is not defined
as an aggregate or a generalization. Lexical representations of
aggregate and generalized process and product descriptions
should merely refer to the other aggregate and generalized
process and product descriptions and to the atomie process”
snd product descriptions directly used in their descriptions. To
avoid storing multiple almost identical copies of atomic process
and product descriptions, we shall investigate incremental file
representation techniques where a new file which is an almost
identical copy of an existing file is represented by a pointer to
the existing file plus a file differential. Techniques of this
nature are discussed in [Roussopoulos 87].

The lexical representation of non-atomic objects can be
materialized through the use of relational views.

Based on the above discussion we can now model the storing
of lexical representations of atomic process and pro-
duct descriptions. What these lexical representations look
like, will of course depend on which language we choose for
their representation.

Currently available database management systems do not
directly support the storing of large, variable size, unstructured
lexical objects. A possible but not very desirable solution is to
develop a program that stores these objects on files under
operating system control and stores addresses of the files under
database control.

We model the lexical representation of atomic objects as fol-
lows:

_ A version normally refers to an object that is almost identical

to another object. In our model, the concepts of process
description and product description can be used to model the
notion of version, and we shall not introduce versions as &
separate concept.

A configuration normally refers to a collection of versions.
Again, the concept of configuration will not be introduced as a
separate concept because it can be modeled by the concepts
already defined.

ORIGINAL PAGE IS
OF POOR QUALITY

The concept of measurements has recently been the subject
of considerable attention in softwire engineering. Measure-
ment cap be perceived as a product instance or s process execu-
tion. A measurement can be part of a product instance or a
product instaoce io its own right, or measuremenl can be part
of & process executliod OF & process execulion in its own right. A
measurement can therefore be described by or as part of a pro-
duct description, or it can be described by or as part of a pro-
cess description. Therefore, we shall not introduce measyre-
ment as a new concept.

Process executions and product instances have several time
attributes associated with them. Examples are the actual start
and epd times of process executions and the actual time of
creation of product instances Examples of time atiributes for
process and product descriptions are time of creation and last
time executed and .instantiated. Other time attributes are
defined on & relative time scale, (e.g., one process execution
must preceed another one).

Time attributes are, however, examples of measurements, snd
we shall therefore not introduce the time concept explicitly at
this stage.

The purpose of this section bhas been to provide a formal
schema definition that completely and correctly mirrors funda-
mental concepts in our process and product specification
language independently of their lexical representation.

The next step is to define the lexical object-name-sets that will
allow us to reference and represent the concepts. It is very
important Lo understand that the information base is com-
pletely blind with respect to ihe internal structure of the

object-1 -pames; it caonot see use, or maintain any internal

structure of object-names, (e.g. an object-pame-set may copn- -

sist of a set of Ada programs, byt they all look like text strings
to the information base). This implies that the maintenance of
any structure of or constraints between object-pames is the
sole responsibility of the users and software tools sccessing the
information base. -

Self-Describing Database Systems

A Self-Describing Database System is unique in that it pro-
vides an active and integrated data dictionary as part of
the database management system. Such a data dictionary sys-
tem is essential in our system.

The architecture of a Self-Describing Database System is illus-
trated below, Mark 85,. This architecture has recently been
adopted by xhe, ANSISPARC [Burns 86, as the basis for a new
Reference Model for database management systems, and it is
the basis for current v;:)rk in the 1SO.

interface

Data fore DEMS mets echemma
Masags mend PR D —
Too Bos

pia dichonndy
yoodmany

1]
Sesduand .

[TY

Architecture of a Self -Describing Database System

The eore DBMS supports the well-known point—of-view
dimension of data description which consists of internal, con-
ceptual, snd external schemata. In addition, it supports and
enforces the intension-extension dimension of data descrip-
tion The intension—extension dimension has four levels of data
description Applicstion dsu. are stored as data The
the application data, are stored in the data dictionary The
rules for defining, managing, and controlling the use of
the application schemata are stored in the data diction-
ary schems A fundamental set of rules for defining sche
mata, {i.e. a description of the data models supported by the
Self-Describing Database Syslem) is defined in the meta-

"schema The set of rules in the meta—schema will allow the

‘management strategies represented in the data dicuionary
schema to evolve in accordance with changing data manage
ment policies. Each level of data description in the intension-
extension dimension is the extension of the level above it. and
the intension for the level beiow it. The meta-schema is self-
describing. (i.e. it is one of the schemata it describes).

The core DBMS can be thought of as a DBMS stripped to the
bones. It supports the Data Language. DL, which is the only
language used to retrieve and change data and data descrip-
tions at any level in the intension-extension dimension. The
DL provides a set of primitive operations on any data element
or da}g description element at any level in the intension-
extension dimension of data description Any compound opera-
tions peeded must be implemented as a tool in the Data
Management Tool Box using the primitive operations of the
DL. Data Management Tools are plug—compaublc with the
core DBMS through the DL.

The basic idea bebhind our generator lpproub is to make the
schema designed in section 4 part of the data dictionary
schema above. By doing this, the process snd product descrip-
tion ipstances created through this schema will be stored as
data in the data dictionary. These data may in turn be inter-
preted as an application schema controlling process executions
and product instances in a specific software engineering project.
The data describing these process executions and product
instances will therefore be stored as part of the application
data.

To make this work, the semantics of insert operations used
through the data dictionary schema must guarantee that 1)
process and product descriptions are inserted in the data dic-
tionary, and 2) data structures are created at the application
data level to hold process execution and product instances coo-
forming to these descriptions.

The Generator Approach

To understand the philosophy bebind the generator approach
we will consider the data dictionary schema {catalog) of a self-
describing database system.

Onpe of the most important things contained in the data dic-
tionary schema is a relation of relations. Simplified, it looks
something like this:

As can be seen, the first few tuples in the relation of relations
contain a definition of that relation itsell (its is selfdescribing)
and other relations describing the relational data model. The
next set of tuples define the first two relations we defined in
section 4, namely “aggregale_process_descript® and
*process_descTipl_pame®.

3-8

i i gl

|

il

&l

. . .

. e . -— -
ruiniles . daginih
i - -

raintea il
L] — [rom—
b= sRrbute
rindlng - -
L] omis
rialing - e
.
L el
prowms
proass _part_of e
METEL ("
oo L procan
map -
proms
ot L :
L
sroom wromm
et b_mamw S L
nee L]

Whenever, a set of tuples is inserted into this relation of rela-
tions, the semantics of the insert operation further trigger the
creation of an empty structure to hold the extension (data) of
the defined relation. This means that the insertion of the
tuples defining 'aggregate_process_descript' and
*process_descript_pame® in the above example will result in
the creation of an empty structure in the data dictionary to
hold the extension of these relations.
Let us now turn our attention to these empty structures.

When we insert tuples in them we are inserting data that in
turn can be interpreted as defining sn application schema.

L
prooes
mcrips
e _ it
»_pn o T
21} ” »” [
»l2 | "l um
F1]] iz [
e L e yue
izl pi2 pie =yl
e e nn N_in
- - (2t] &

In the illustration above we bave inserted a set of tuples that
constilule an aggregate process description. The aggregate pro-
cess description defines the development (dev) process to con-
sist of analysis (anal), design (des), specification (spec), and
implementation (imp!), and it defines the design to consist of
high-level design (hl_des) snd low-level design (ll_des} The
p-values are surrogates produced by the system. -

These aggregate process description will result in the creation
of two empty structures at the application data level one for
the aggregate development process and one for the aggregate
design process Into these empty structures we can store data
about specific executions of the defined development and design
processes.

We could continue the example by 1) inserting into the relation
"aggregate_ process_ descript_ seq” tuples defining the
sequence of the processes in the development process. 2) insert-
ing into the relation "aggregate_ product_ descript™ tuples
defining the products relsvant to the development process. and
3} inserting into the relation "process_ product_ i,0% tuples
defining which processes use and produce which products.

However, the example we have given is hopefully sufficient to
illustrate the idea.

Conclusions and Future Research

ldeally, the information base for software engineering described
in this paper will provide suppor for the automatic generation

of an information base from a formal specification of a set of

process and product descriptions Ip order to further develop
this idealized information base, more research in the areas of
software engineering and databases is required Altbough we
only list the major database research issues. we strongly believe
that success in this research area will depend oo the tight
cooperation between the two areas (The software engineering
research issues are listed in [Rombach 88]).

Future Database Research Issues

There is currently no data model, let alone a database manage-
ment system, capable of supporting & meta information base
for software engineering. One of the goals of our research is o
develop the concepts and tools that are missing For now,
we are taking a very conservative approach, trying to
use and extend existing relational database technology
to see bow far it will take us. There are especially two
things from existing relational technology that we would like to
preserve: a non-procedural calculus query language. and a con-
straint definition capability based on this calculus. We see no
conflict between preserving these and at the same time provid-
ing a more object oriented data manipulation interface betweep
the software engineering oriented model and the database
model on which we have concentrated in this paper.

Providing an object oriented data manipulation
interface between - the software engineering
oriented model and the database oriented model
will be our next major research topie.

We plan to use the insert, delete, and update operations
provided in the relational calculus to program transac-
tions that will allow us to create, aggregate, decompose,
generalize, specialize, and delete process and product
descriptions in & consistent way.

An information base for software engineering must ideally be
adnpuble to meet the needs for continuously tailoring software
engineering processes aad products to changing project peeds
and characteristics of the project environment and the organi-
z8tiod.

An important research issue is therefore the ban-

dling of data when its corresponding schema

changes. The self-describing database system pro-
vides an ideal framework for investigating this
fssue.
Given a formal specification of a programming language, a
document form, etc., it is theoretically possible to sutomati-
cally produce the schema needed to explicitly represent the
internal structure of all objects produced sccording to the for-
malism, is it practical?

A major research question is where the ®invisible®
part of the database ends and the ®visible® part
begins. Our approach to this question is to try to
push the existing database techpology as far as
possible.
However, we will eventually bave to face the problem of com-
plex lexical object types.

A major research problem is therefore the support
of extensibility which allows for user defined lexi-
cal object types.

Two possible solutions, representiog the main streams in object
oriented database research, are to provide tool access to com-
plex lexical objects through the query language or to store user
defined operations on complex lexical objects in the database.
" The dilTerence betweep the solutions is minor.

A long list of sdditional Iesqrth problem can be derived from

“section
[Bernstein

the list of specilic execulion requirements presen

2. Many of these research problems are discussed in
87] and are not repeated here.

References

[Bernstein 87]
P. A. Bernstein, "Database System Support for Software
Engineering,* 7P}7oc7eed|ngs of the Ninth Internatiopal
Conlerence on Software Engineering, Monterey, CA,

March 30 -April 2, 1987, pp. 166-178.

[{Codd 79]

Codd, EF,,
Capture More Meaning,*
1079.

[Hall 78] - . . .
Hall, P, Owleu. I, Ton SJP *Relations and Enti-
ties,® ln GM.]\npsen (ed.), '\{odeling in Data Base
Management Systems,® North-Holland 1976.

[Ma.rk 85) : : e
Mark, L., ®Self -Describing Databases - Formalization
and Realization,® TR 1484 Department of Computer Sci-
ence, University of Maryland Apnl 1985.

[Roussopoulos 87]
Roussopoulos, N, ®lncremental Computation Models,®
Department of Computer Science, University of Mary-
land, 1087

*Extending the Database Relational Model to
ACM TODS 4, No. 4, December

3

[Rombach 88]
H.D Rombach, L. Mark, *Software Process and Product
Specifications: A Basis Tor Generating Costumized Infor-
mation Bases,® Submitted for HICSS-22. 1988.

[Dittrich 86}
K. Dittrich, "Object-Oriented Database Systems: The
Notion and the Issues,® Proceedings International
Worksbop on Object-Oriented Database Systems, Pacific
Grove, CA, Sept. 1986.

[Dadam 86
P. Dadam et sl, "A DBMS Prowotype to Support
Extended NF? Rehllons An lotegrated View of Flat
Tables and Hierarchies,® Proceedings SIGMOD Confer-
eoce, Washington, DC, 1986.

[Borgida 88]
Alexander Borgida, *Modeling Class Hierarchies with
Contradictions,* Proceedings SIGMOD Conference, Chi-
cago, 1088

[Carey 88]
M. Carey, D. DeWitt, S. Vanderberg. *A Data Mode! and
Query Language for EXODUS,* Proceedings SIGMOD
Conference, Chicago, 1988

[Thomas 86]
S.J. Thomas, P.C. Fischer, *Nested Relational Strue-
tures,® The Theory of Databases, P C Kannellakis, ed.,
JAI Press, 1986.

10

1

LI

&

U

qali

Wi

g %/ an ®wi W

i

SOFTWARE PROCESS & PRODUCT SPECIFICATIONS:
A Basis for Generating Customised SE Information Bases

H. Dieter Rombach and Leo Mark

Department of Computer Science

Institute for Advanced Computer Studies (UMIACS)
University of Maryland
College Park, MD 20742

Abstract

Software Engineering is a challenging new application area for
information bases. The new challenges are twolold: software
engineering specific (how can we model software engineering
processes and products properly?} and information base specific
(how can we mirror such processes naturally within an information
base?). Meeting these challenges requires joint soltware
engineering/information base research. The Meta Information Base
project at the University of Maryland represents such a joint
research effort. This project aims at generating customized software
engineering information bases from formal specifications of soft-
ware engineering processes and products. The three central
research topics are to develop (i) a software process specification
language which allows us to capture all the information necessary
w understand, control and improve any given software engineering
process, (ii) an object oriented information base schema language
which allows us to model the mirroring information base structure
for any such software engineering process, and (iii) a mapping
between tne software engineering oriented and information base
oriented models. If an information base is truly expected to mirror
a given software engineering process, it needs to be tailorable to
the changing characteristics of the software process itself. The
generator-based approach suggested in our project seems to be the
natural approach to satisfy this important need. Software process
and product specifications are expected to have not only an impact
on generating customized software engineering environment com-
ponents (such as information bases). Systematic improvement of
software processes and products - learning about software engineer-
ing approaches and reusing software engineering related experience
- ¢an not be achieved without having a specification of the objects
we want o improve. This paper discusses general requirements for
software process specification languages, presents a first prototype
software process specification language, demonstrates the applica-
tion of this language and derives software engineering related
requirements {or a supporting information base. The actual eflorts
aimed at implementing these information base requirements are
briefly mentioned in the conclusions. '

L Introduction

Lessons learned from having monitored the software development
and maintenance process over a decade [1, 11] suggest a high-level
improvement oriented software engineering model consisting of
planning, execution, and learning & feedback stages [4]:

¢ Planning the software engineering process is aimed at defining
plans for developing quality a priori. It includes choosing the
appropriate overall process model as well as the specific methods
and tools supporting this process model. It involves tailoring

5207

each of them for the project specific goals and the characteristics
of the project environment and the organization. Process
models, methods and wols need to be planned for construction as
well as learning and feedback. The effectiveness of this planning
process depends on the precision in the specification of the pro-
cess models, methods and tools {formal is better than heuristic)
and the experience concerning their effects. The entire planning
process as well as the tailoring process need o be formalized.

¢ Execution of the software engineering processes follows the
plans derived during planning; the existence of construction
guidelines helps in assuring that process models, methods and
tools are being used as intended. It should be noted that execu-
tion includes the construction of the traditional project docu-
ments (e.g. requirements, design, code) and all other kinds of
information prescribed by the planning process (e g., test results,
schedule, effort data), as well as the analysis of the construction
processes and resulting products from various (during planning
prescribed) perspectives.

Learning and feedback follows the plans defined during plan-
ning. Learning is in part based on the analysis results derived
during execution of processes (e.g., regarding the use of process
models, methods and tools) as well as products. We compare the
actual results with the desired results, and feed the lessons
learned back into the ongoing project (which might result in
iterating the project plans) or into the planning of future pro-
jects. Feedback is important to engineers and managers. An
effective feedback mechanism is especially crucial for supporting
the complex management decision process.

Software engineering processes need to possess the attributes tailor-
sble and tractable. Tailorability is required in order to plan the
software engineering process for the project specific goals and pro-
ject environment characteristics. Tractability is required in order to
specifly processes in an understandable way, construct products
according to these plans, and monitor the construction for the pur-
pose of feedback and learning. The TAME (Tailoring A Measure-
ment Environment) project at the University of Maryland aims at
the development of a measurement, feedback and planning
environment for software engineering (4]. Part of this project is to
develop a software engineering information base. The development
of a process and product specification language (although neces-
sary) is not part of the current scope of the TAME project.

Our Meta Information Base project project at the University of
Maryland represents a joint software engineering/information base
research effort. The basic idea of this approach is to generate cus-
tomited software engineering information bases from f{ormal
specifications of software engineering processes. The three central
research topics are to develop (i} a software process specification
Janguage which allows us to capture all the information necessary
o understand, control and improve any given software engineering
process, (ii) an object oriented information base schema language

which allows us to model the mirroring information base structyre
for any such software engineering process, and (iii) a mapping
between the software engineering oriented and information base

oriented models. The generator approach acknowledges the fact’

that software engineering processes change from environment to
environment, but also from project to project. If an information
base is truly expected to mirrorty given software engineering pro-
cess, it needs to be tailorable to the changing characteristics of the
software process itself. The generator-based approach suggested by
our project seems Lo be the natural approach to satisfy this impor-
tant need. Genemating customized software information bases is
not the sole application of software process specifications. We are
also investigating the benefits of software specifications for the pur-
pose of better understanding, planuing and improvement of soft-

ware engineering related aspects. We believe that learning about

software engineering and reusing software engine

ng related

experience can not be done in a systematic way without specifying
the objects of Jearning and reuse - the software processes - them-
selves. In order 1o do a good job of learning and reuse, measuring
and analyzing the software processes and their effects seems to be a
very helpful mechanism. We therefore suggest not only to model
the construction oriented software engineering aspects, but also the
analysis oriented ones.

Based on our improvement oriented TAME software process model,
we anticipate the [ollowing framework for supporting software
engineering processes (see figure 1):

USER INTERFACE

& 'y

L4 L 4
PLANNING | EXECUTION

» »

¥ v

INFORMATION BASE INTERFACE

INFORMATION BASE

Figure 1: Framework for SE Process Support

Each software engineering project consists of a planning and execu-

tion stage. During the planning phase plans (specifications) of all .

project relevant processes and products get developed; the execu-
tion stage consists of conducting the project according to these
plans. The underlying information base stores all process and pro-
duct plans as well as the information derived during execution of
these plans.” The plans themselves provide the basis for structuring
the execution-derived information. Storing such information scross
projects results in historical information bases. Improvement can
then be achieved by structuring this information appropriately
{based on process plans), and reusing it during the pianning and
execution phase of future projects after tailoring it to the specific
characteristics of these future projects. Figure 1 suggests that we
need to specify software processes and products for different pur-
poses: o support the planning activities al the user interface, to
allow the internal representation of plans, and to support the
storage and retrieval of plans and information derived during exe-

5207

cution according to plans. In our project, we expect to use three
different (but compatible) specification languages in order to sauisfy
the different needs of each perspective.

This paper presents the software engineering oriented part of our
joint project . T discusses general requirements for software pro-

cess specification languages, presents first prototype software .

specification languages (one to support the planning activities at
the user interface, one to represent plans internally), demonstrates
the application of these prototype languages, and derives software
engineering related requiremeants for a supporting information base.
The information base related work of our project, aimed at imple-
menting these software engineering oriented information base
requirements, is not part of this paper.

ir ts w eci i

We distinguish between very general requirements which ack-
nowledge the basic nature of software processes, and more concrete
requirements whose relative importance depends on the purpose of
software process and product specifications.

General requirements for 3 software process specification lan-
guage include the abilityto : -

1. specify all aspects that seem to be important within a given soft-
ware project (and not to be limited o a specific set of aspects):
This requirement acknowledges the fact that there exist no com-

monly accepted software process models today ==-7iicm =eve
specily with varying degrees of detail and to refine initial-
specifications in the future as we learn: This requirement ack-
nowledges the fact that our understanding of some processes is
insufficient, of others is pretty preciss.

deal with creative and mechanical aspects of software processes
in different ways (eg., behavioral specifications for creative
aspects and algorithmic specifications for mechanical aspects):
This requirement acknowledges the fact that software processes
include both creative and mechanical aspects, and that we must

tad

bad

deal with both in a natural way. == -

easily modify process specifications: This requirement ack-
nowledges the constant need for tailoring process specifications
to changing project or environment needs.— - - o

-

Specific requirements (from a planning perspective) for a
software process and product specification language include the
ability to specify .

-

process, product, and constraint types .

. use {input) and produce {output) relationships between process
and product types

. (pre- and post-) condition relationships between constraint and
process/product types (A pre-condition of a process is a con-
straint imposed upon initiation of this process; s post-condition”
of a process is 3 constraint imposed upon termination of this pro-
cess; a condition of a product is a constraint imposed upon this
product.)

4. control flow relationships between process types (sequence, alter-
nation, iteration, and parallelism)

-]

ta

S. structural relationships between product types (sequence, alter-
nation and iteration)
8. dependency relationship between process types (Process Pl is

dependent on process P2, if every execution of P2 triggers simul-
taneous execution of P1.” Typically, measurement processes are
dependent on the construction processes they are supposed to
monitor.} o B

7. aggregation and decomposition of process and product types

* We present another paper discussing the information base oriented part of our
project during the Database Formalisms, Software & Systems” session of this
same conference [10}. -

3212

ml Wik

L

i

]

8. generalization and specialization of process and product types

9. constructive as well as analytic (measurement oriented) product
and process types

10. different roles (Different roles are performed in a software pro-
ject such as design role, test role, quality assurance role, or
management role. Roles define views or perspectives of (a subset
of) the processes and products- relevant to a particular project.
Type and number of roles ma¥ change from project o project.)

11. time {relative and absolute] & space (sofiware structure, ver-
sions, configurations) dimensions

12. non-determinism due to user interaction

Specific requirements (from an execution perspective) for s
software process and product specification language include the
ability to handle

1. the instantiation (creation of objects) of process, product and
constraint types

2. long-term, nested transactions {Many software engineering
processes such as designing may stretch over weeks or months; in
addition, they may contain nested activities.)

3. varying degrees of persistence (Some information needs to kept
forever, some only for the duration of the project, and others
only until a new instance (e.g., product version) has been
created.)

4. tolerance of inconsistency (Because of the long-term nature of
software engineering processes, it might be necessary to store
intermediate information that does not yet conform with the
desired consistency criteria.)

S. dynamic types (type hierarchies) (an object of type product (e.g.,
3 compiler developed during one project) may be used as an
object of type process during a future project.}

6. dialogues between processes (including human beings)

7. dynamic changes of process specification types (It is impossible
to plan for all possible (non-deterministic) results produced by
human beings in advance. However, we would like o react o
those situations by dynamically re-planning during execution.
Although, it is no problem to change s specification during the
planning stage, it might be a problem to do it during execution
and preserve the current execution state.)

8. back-tracking due to execution failyres

8. the organization of historical sequences of product obje¢ts and
process executions

10. the enormous amounts of interaction between parallel sctivities

11. the role-specific interpretation of facts (The same process and
product facts might require different interpretation in the context
of different roles.} .

12. the triggering of actions (based on pre- and post-conditions)

The list of execution-point-of-view requirements is heavily
influenced by the results of a working group during the 4th Inter-
national Workshop on Process Specification (Moretonhampstead,
UK, May 1988), chaired by Tom Cheatham [12].

3. Prototype Process & Product Specification Languages

Several research projects are working towards improving the soft-
ware development process from various perspectives: Arcadia {13],
TAME (2, 3, 4], GENESIS [15], and others [12]. No consensus
seems (o be reached as to what an appropriate specification lan-
guage should look like in order to be both capable of describing the
important process and product aspects and acceptable to the
intended user.

We believe that no single specification language will satisfy the
needs of software engineers as well as the designers of the informa-
tion base. Based on our SEE model in figure 1, we believe that
there is a need for at least three different language representations:

5207

o the application level language, which is used to support the
task of specifying the relevant process and product aspects dur-
ing the planning stage {at the user interface of our SE process
model in figure 1). This type of specification language should
accommodate the needs of its potential users (eg., software
engineers, managers).

e the intermediste level langusge, which is used to represent-
the results of the planning stage. This type of specification lan-
guage should emphasize completeness, consistency, and precise-
ness. Complete in this context means executable, independent of
whether this execution requires user interaction or not.

e the information base level language, which is used to formu-
late the storage and retrieval peeds of software processes and
products. These needs encompass the process and product
specifications themselves as developed during the planning stage.
as well as the information accumulated during the execution of
those plans during the execution stage. This kind of language is
usually referred to as schema language.

In addition, we need to provide for transformations between adja-
cent language levels. The application level language representation
of a particular software engineering process or product {e.g. the
design process) eventually needs to be transformed into the
appropriate information base level language representation
(schema). This transformation must preserve consistency. The
intermediate level language representation can be looked at as a
reference representation acceptable to both the software engineer-
ing and information base perspective. The separation provides
independence of application and information base representations
and it allows us to to separate the entire research area into two
clearly distinguished but connected (via the intermediate level)
areas. Ideally, these transformations should be automated; this
would allow us to completely hide the information base view from
the software engineer and vise-versa.

In the following two subsections, we introduce first prototype lan-
guages for the application and intermediate level.

Our prototype process and product specification language for the
application level is graphically oriented. At this point it provides
graphical elements satisfying the first eight specific planning
oriented requirements listed in section 2:

1. Three kinds of object types: process types (represented
as boxes), product types (represented aa circles), and con-
straint types (represented as rhombs).

Figure 3.1{a): Object Types

The concept process is used for all kinds of software engineering
activities. It comprises the elements of our high-level software
engineering model {planning, construction, learning and feed-
back), overall software process models such as the "water fall”
{7, 16], “iterative enhancement” [5| or "spiral” (8] model, com-
plex methodologies such as the "Cleanroom™ (9] methodology.
particular methods and tools such as "top-down design” or
"Jackson design”, and even individual statements of an
automated tool.

The concept product is used for all kinds of software engineering
information. It comprises the plans for construction and learning
and feedback produced by the planning process of our high-level
software engineering model, deliverable products produced by

3-13

ORIGINAL PAGE IS
OF POOR QUALITY

the construction process such as requirements, design, code, but
also Lest data, schedule, resources, and all kinds of measurement
data.

The concept consiraint is used to represent all kinds of software
engineering conditions (pre-conditions for the execution of a pro-
cess and post-conditions which .are checked at process termina-
tion time). Constraints may S50 be imposed on products. Con-
straints are used to model schedules, completeness criteria or any
other kind of quality or productivity characteristic. Constraints
are basically expressed as boolean expressions.

2. Two kinds of relations between process and product
types: the use relation (represented as a solid arrow con-
necting s product and a process type) and the produce
relation (represented as a solid arrow connecting a pro-
cess and a product type) - -

@ f
(=)

Fl‘ll.l'. Sl(b) Use/Produce R;I-tionn

In figure 3.1(b), process of type P1 uses products of type IP1 and
IP2 and produces products of type OP1, OP2, and OP3.

The relations wae and produce are used to explicitly express all
kinds of information needed for executing a process and resulting
from its execution. Used information can range from experience
(for example, in the form of historical data), w0 products pro-
duced during the same project by other processes, products pro-
duced during prior projects, and characteristics of the project
and project environment. Produced information can range from
deliverable products (e.g. design or code documents) to measure-
“ment data or even new process and product descriptions based
on learning.

3. Three kinds of r;i;zit;;;hii;liit;;;veen constraint types
and process or product types: pre-condition, post-
condition, condition (represented as solid double arrows).

.

n

X v S

Figure 3.1(c): Constraint Relations

In figure 3.1(c), constraint of type ¢l is a pre-condition for & pro-
cess of type P1; constraint of type ¢2 is s post-condition for a
process of type P1; constraint of type ¢3 is a condition of a pro-
duct of type P2.

The constraint relationships are used to ex
conditions that need to be Tulfilled before star
tion of a process, but cannot be expressed via use/produce rela-
tionships or explicit control flow relationships between processes.

5207

[

Examples are schedule, and all kinds of quality and performance
requirements. In sddition, constraint relationships are used to
express expected characteristics of & product; e.g, maximum
complexity.

4. Four kinds of control flow relations between process

types: the sequence, allernation, iteration and parallelism*
relations (represented as solid arrows between process
types; paraliel control flow is indicated through the aug-
mentation of the corresponding arrows with "||*).

The semantics of sequential control flow is obvious. The seman-
tics of alternate control flow is lo execute exactly one of the
alternatives. The selection criterion can be expressed in terms of
3 pre-condition on each of the alternative processes. Alternation
is completely deterministic il each of the alternate processes
possesses & pre-condition and all pre-conditions are mutually
exclusive. It is possible to have nondeterministic altérnation (no
constraints) or incomplete alternation (no alternative applies
under certain circumstances). The semantics of iterative control
flow is o execute some process repeatedly. The negated termi-
nation criterion is provided in form of a pre-condition to the
iterated process. It is possible to specily indefinite iteration (no
termination constraint). The semantics of parallel control flow is
to execute all parallel processes independent of each other. How-
ever, all of them must be completed in order to satisly the paral-
lel control flow relation: - o

Figure 3.1(d): Control Flow Relations

In figure 3.1(d), process of type P1 is in sequence with process of
type P2, processes of type P5 and P8 are alternatively executed
after P4, process of type P3 is iteratively executed, and processes
of type P8 and P9 are executed in parallel (independently). The
decision whether 10 execute P5 or P8 can be based on twe
mutually exclusive pre-conditions C5 and C8.

Note: The graphical symbols for data and control flow are dis-
tinguished by their context. Arrows representing data flow con-
nect processes and products, whereas arrows representing control
flow connect just processes.

5. Three kinds of structural relations between product

types: the sequence, alternation, and iteration relstions
(represented in the same way as control flow between
process types).

The relation ’sequence’ indicates the sequential compaosition of
two products; the relation 'alternation’ indicates the alternate
inclusion of either of two products, and the relation ‘iteration’

indicates the repeated occurrence of a product (0 or more times).
We use the same relation names to express the control flow com-
position of process types and the structural composition of pro-
duct types to minimize the number of concepts.

A dependency relationship between procésses
(represented as dotted double arrows between two
processes).

I

vl

ORIGINAL PAGE IS
CF POOR CUALITY

i
w
P2

Figure 3.1(¢): Dependeney Relation
In Ggure 3.1(e), P1 is dependent on P2.

The dependency relstionship is used to express a very tight
form of parallelism between processes. The relation is directed
and defines a master-slave relationship in the sense that when-
ever the master process is in execution, the slave process gets
executed too. This means more than just to start end terminate
at the same time; it means absolutely synchronized execution.
This concept allows us to model the measurement of software
processes. For example, if we bave a design process and we
would like to collect all the effort spent on designing, we model
the design process as the master process and the effort measure-
ment process as the slave process.

7. A relation between process or product types sllowing for
decomposition and aggregation: the is_part_of relation
(represented as dashed srrows augmented with the rela-
tion name)

A

Y. Y r
e .
’ In_pert_of AN

’

¢ h_pcn_d‘
=] -] (=)=

Figure 3.1(f): Decomposition/Aggregation Relations

In figure 3.1(f), process type P1 is decomposed into (and com-
pletely substituted by} process types P11 to Pln. Product type
P2 is similarly decomposed into product types P21 to P2m.

We need to allow for decompoaition and aggregation of process
and product types. The decomposition is necessary to describe
the refining of some process or product into more precise (less
abstract) processes or products.

Note: Decompositions are level complete. This means, if a pro-
cess type P1 is decomposed in process types P11, P12, P13, and
P14 (see (6)), then these four processes together make up the
entire functionality of P1 (they entirely substitute P1)!

For example, the overall process "development” might be refined
into "requirements analysis”, "design”, "coding”, etc.; similarly,
we can refine the product "deliverables” into products "require-
ments document”, "design document”, "source code documents”,
ete.

cess types recursively is speciafization and generalization. In the
case that one method can be automated by a variety of tools
alternatively, we can view the tools as specializations of the
method, or the method as a generalization of those specific tools.

We use the concept product recursively in the same two ways as
processes.

The relations sequence, alternation, iteration and parallelism (see
4.) are used in the context of decomposing and aggregating pro-
cess or product types.

The semantics of these relations in the context of a process type
decomposition is as follows: Each decomposed process type either
(a) inherits the entire set of use and produce relations of the
aggregated process types, (b) inherits parts of the use and pro-
duce relations of the aggregated process types, {c) uses product
types produced by a different decomposed process type and pro-
duces product types to be used by a different decomposed process
type, or all possible combinations of (a), {b), and {¢). According
to (2), each decomposed process type requires at least one pro-
duct type for use and production. The functionality of the aggre-
gated process type is identical to the functionality achieved bv
all decomposed process types il executed according to their con-
trol flow relationships.

8. A relation between process or product types allowing for

specislization and generalization: the is_a relation
(represented as dashed arrows augmented with the rela-
tion nsme)

¥ Y

- e " ¢ s s)

Figure 3.1(g): Specialisation/Generalization Relations

In RAgure 3.1(g), each of the process types P11 to Pln is a special-
ization of process type P1, and each of the product types P21 1o
P2m is a specialization of product type P2. P1 is a generaliza-
tion of each of the P11 to Pln and P2 is a generalization of P21
to P2m.

We need to allow for specralization and generalization of process

" and product types. Generalization of 8 set of process and pro-

duct types allows to group them according to some common
aspect.

For example, we can generalize compilers for all kinds of lan-
guages o & general compiler process that translates an algo-
rithmic source code document into object code. Another example
is viewing all wools supporting a specific method alternatively as
specializations of that method.

In addition we satisfy the specific planning oriented requirements 9

Decomposition is also necessary in order to reflect the hierarchy
and 10 as follows:

of product structure. For example, "system™ might be recursively

decomposed into "subsystems”, "components” and "modules”. 9. We encourage the awareness of constructive and ans-

We use the concept process recursively in two ways. Each pro-
cess type can be decomposed into lower-level process types or ean
be included into the aggregation of higher-level process types.
This use of the term process can reduce the difference between
an informal method and a concrete automated tool supporting
this method to a difference in the degree of formalism in the
specification. Whereas the method might be described in infor-
mal English, the tool might be the complete algorithmic formali-
2ation of the same process. The second possibility of using pro-

5207

Iytle process and product aspects. Again, the control flow
and structural relations defined for the graphical notation allow
for representing all kinds of decompositions and aggregations.
The success of software projects depends on a sound integration
of constructive and analytic aspects as indicated by our high-
level software engineering model. This fact does not mean that
we should not view them as different aspects.

The conatructive aspects are concerned with generating products,
while the anralytic aspects are concerned with secondary informa-

3-15

tion derived from monitoring and analysing constructive
processes and products.

10. We allow for the deflnition of different roles. Roles are
defined as projections onto the set of process and product types
defined for some project. They define specific views or perspec-
tives. Different views may inglude the same process or product
type. For example, the desigrrTole and the quality assurance role
may both be interested in the design product, but from very
different perspectives. Whereas the design role is interested in
how he can build the design product best, the quality sssurance
role is emphasizing the adherence of the design product o stated
quality requirements. One role may be performed by several
people, or one person may execute several roles. The number of
roles is not predefined, but rather project specific. Roles are
defined explicitly. In practice, different roles will very often be
specified by people with different project experience.

We believe that the concepts and principles presented in this sec-
tion provide a promising basis for building process and product
specification languages. The objective is to be able to specify all
aspects of & software process or product {completely), azcording to
» set of unifying principles (consistently), and to the level of detail
possible due to the nature of the problem and our understanding
(precisely).

The intermediate level specification language is specified in BNF-
style. Appendix (A) contains the syntax rules necessary o specify
process types. The necessary context rules are not included in
Appendix {A).

This language allows us to specify a given process type (or product
type) at any desirable and possible level of detail. Each process
type specification consists of a proccss_heading and a process_body.
The process_heading describes the unique process_type_name,
whereas the process_body contains the actual specification. The
process_body consists of a process_specification_part, a
role_specification_part, and 8 resovrce_sasignment parl. The
process_specification_part contains an tnterface_part, a
refinement_part, and an fmplementaiion_part. The interface_part
characterizes the used and produced product types and the
attached constraint types. The refinement_part describes the
refinement of this process type into lower level processes {includes
also the refinement of the related products and constraints) and
defines their connections at this lower level. The implementation
part contains the final algorithmic implementation of a process
type. Refinement and implementation parts exclude each other;
cither a process type gets refined further or it is at its final level of
detail. Refinement and implementation parts are optional. The
role_specification_part defines all roles. Roles can be viewed as
'super’ processes. The resource_assignment_part assigns resources
to processes and/or roles. The resources are specified like product
types. This includes the ability to refine them. U we have several
organizations of people involved in executing 8 certain process, we
can model each organization as a resource consisting of people
resources. The product body of product type specifications consisis
only of a refinement_part and implementation_part.

This prototype language allows us to satisfy the planning oriented
specific requirements listed in section 2. The current language

definition is by no means final. We plan on using it &s an experi-
mental vehicle allowing us to validate whether the chosen concepts
are satisfactory for specifying all kinds of process and product
related software engineering aspects. S

5207

The validity and usefulness of our software engineering process
model depends on whether we are able to {a) generate specifications
for all kinds of process and product types using our languages, (b)
make project personnel use the specification languages during plan-
ning as well as the generated specific models during execution and
learning and feedback, and {c) generate an information base sup-
porting the planning of process and product types (store and reuse)
and the execution of instantiations of process and product types
(e.g., instantiation itsell, storing information accumulated during
execution). R

So far we have been able o specify a number of process and pro-
duct types using our graphical notation. The specified process
types include a variety of existing project models (e.g. [17]) as well
as specific development methods. The completely automated ver-
sion of a process type is a tool. We would be able to represent any
structured implementation of a tool using our control flow rela-
tions.

The answer to part (b} requires more work. It seems that our pro-
cess model and languages will be useful during planning for
describing aspects of construction and learning and feedback as
well as the consumed and produced products completely, precisely
and as formal as possible. It should also help execution and jearn-
ing and feedback in that it should be easy w0 follow these kinds of
complete, consistent and precise plans. The degree to which execu-
tion can be supported will depend on the degree w0 which we will
be able to satisfy the specific, execution oriented requirements
listed in section 2.

Our initial answer to part (¢} is presented in [10].

In this section we will apply our two prototype specification lan-
guages to a small example. We will introduce the example in sec-
tion 4.1, demonstrate the use of the graphical prototype application
level language in section 4.2, and show how the final plans ean be
represented using our prototype intermediate level language in sec-
tion 4.3.

4.1. An Example

The exlmpie we have chosen to demonstrate the applicability of
the two prototype languages is a subset of the design related
aspects out of the context of a larger project. -

The example can be characterized as follows:

Specify a process type for the design phase (named 'design’) that
consumes 8 requirements product type ('r') and produced a design
product type (*d’). The design process type consists of two sequen-
tial design sub processes for high-level design ('hl_design’) and
low-level design (’ll_design’). We want to use methods for high-
level design {"yourdon') and low-level design ('pdl’). The design
process will start on date ¢_], and has to be completed by date t_3
== {_1+3 High-level design should be completed by date 1.2 =
t_1+1. In addition, the actual effort spent for high -level design
{('hlefl"} and low-level design (llefl"), the number of low-level design
errors {lerr'), and McCabe’s complexity of the low-level design
products (*v') must be measured for quality assurance purposes. A
low-level design product will not be accepted if its complexity
value exceeds 20. The design process will be performed by five
people. One person is assigned to perform the high-level design.
Three people, including the person who performed the high-level-
design, are assigned to perform the Jow-level design. A fourth per-
son is assigned to perform the quality assurance activities; a fifth

person is assigned to manage the project.

4.2. Specification of the Example (Application Level)

We apply our graphical notation o specify all aspects of the exam-
ple described in section 4.1. except the assignment of people. The
sequence of specification steps is not predefined. We have chosen to

3-16

b

] N | W ui

Ll

ORIG!MAL PAGE i3
OF POOR QUALITY

specify the example according to the three identifiable roles
{designer, quality assurance, manager):
1. DESIGN ROLE:
1.1. Specification of the use and produce relationships associated
with process type 'design”

-
4

Figure 4.2(a): Specification of design process and producta

Figure 4.2(a) describes our initial specification of the example
described in section 4.1.

1.2. Decomposition of process type 'design’ into 'hl_design’ and

"I _design’ (with sequential control flow) and decomposition of
product sype 'd’ into ‘hid’ and 'lid’ (with sequential structure}):

P v
‘ * Is_part of
7 Is_part_of © . N

Figure 4.2(b): Decomposition of 'design’ and 'd'

Figure 4.2(b) describes the decomposition of process type
'design’ into process types 'hl_design’ and ’'ll_design’. The
control flow between ’hi_design’ and 'll_design' is sequential;
the aggregation of product types ’hid’ and 'lld’ into.’d’ is

sequential.
1,3,, Clll)‘et:mm:»o.'.ir.ion of 'hl_design’ into ’yourdon' and 'lld’ into
pdl*:
—©®
ol
o \'@

o_part_of

\
N "
Itme \é

Figure 4.2(c): Decomposition of 'hl_design' and 'll_design’

]

Figure 4.2(c} describes the decomposition of process type
'hi_design’ into 'yourdon' and product type 'lld' into 'pdl’. The
decomposition relation is used to describe this refinement; in
addition, we could also use the specialization relation to indi-
cate that 'yourdon’ is & specific instance of 'hi_design’ and
'pdl’ of Md".

2. QUALITY ASSURANCE ROLE:

21 Specification of measurement oriented process and broduc;.
types:

5207

—)
v F—ome

:
=

I
Figure ¢.2(d): Specification of measurement processes

Figure 4.2(d) describes the measurement of ’hlers’ via process
type 'count_errors’, 'hlefl” via process type 'count_hl_eff’, 'llefl’
via process type 'count_li_efl’, and the McCabe complexity v’
via process type ‘compute_v'. The process types 'count_errors’,
'count_hl_effort’ and 'count_}l_effort’ are dependent on process
types 'yourdon’, ’yourdon' and 'll_design’, respectively.

2.2. Specification of constraints:

Figure 4.2(e): Specification of process and product constraints

Figure 4.2{e) describes how the constraint types ¢_1, ¢_2, and
¢_3 (which use the boolean expressions ‘calendar_time = t1°,
‘calendar_time <= 12', and 'calendar_time <= t3') are
assigned as pre-condition to 'yourdon', post-condition to 'your-
don’, and post_condition to 'll_design’ respectively. The con-
straint type c_4 which uses the boolean expression 'v (pdl) >
20’ is assigned as s pre-condition to 'll_design’ to indicate
another iteration.

3. MANAGEMENT ROLE:
4.1. Specialization of 'hl_design’ and 'lld"

b e e

S,
- i d——-——'
E—]

Figure 4.2(f): Specialization of 'hl_design’

Figure 4.2(f) describes how the specific design method 'your-
don’ can be categorized as a specialization of the process
*hl_design’. There exist other possible specializations, e.g., the
object oriented design method "ood’.

le (Inter

In this section we give u.1 example as to how the specification infor-
mation produced using .he application level language in section 4.2
is represented internaily using the intermediate level specification
language. Each of the objects (process and product types) men-
tioned in section 4.2 is represented by a separate intermediate level
specification. However, each specification will combine all the infor-
mation that relates to & specific object completely, independent of

3-17

the sequence in which it bad been created.

As an example, we give the specification of the process type
'design’. This specification includes the refinement of 'design’ into
"hi_design’ and 'll_design’ {step 1.2 in section 4.2.), and all related
quality assurance aspects {see steps 2.1. and 2.2. in section 4.2.).
The intermediate specification vof this scenario is contained in
Appendix (C). -
The interface_part contains product types 't and 'd’ as well as
constraint types 'c_1’ and e_3". The next refinement level is
described in terms of decomposed types (see decomposition_part),
imported process, product, and consirainl lype specifications (see
use_part), and relstions befween all those iypes (see
connection_part). The '*' is used in the decomposition_part to
indicate that s pov-determined number of processes of type
1l_design’ needs to be instantisted (for each module one). Each of
these instantiations will produce a product of type 'lld". The
role_specification_part identifies all roles according to the way
information was provided at the user interface level (see section
42). In the resource_assignment_part, peoplc rcsources (p1, -oer
P_5) are assigned to execute certain roles {’quality_assurance_role’,
'management_role') and/or process types {"hl_design’, "H_design’).

¢i i } v
The example in APPENDIX (C) is only one of the specifications to
be stored in & supporting software engineering information base. A
complete list of specification objects according to our example is
contained in Appendix (B). Remember, these objects comprise
only the planning part of what needs to be stored in sn informa-
tion base. In addition, the information base must be capable of
storing all the information derived during execution of these pro-
cess type specifications.

i . . -
The role of software engineering information bases is to mirror the
software processes and products relevant to a project or entire
environment. Assuming our improvement oriented software pro-
cess model (consisting of planning and execution stages for each
project}, 8 supporting information base needs to be capable of stor-
ing the process plans as well as the execution derived information.
In our case, plans are the intermediate process specifications intro-
duced in section 3.2 and demonstrated in section 4.3. These plans
could also provide the necessary information for organizing the exe-
cution derived information. Obviously, i the case of our example
in section 4, we would like to see all the plans listed in Appendix
{B) stored in an information base.

A list of important requirements for designing an information base
interface are identical with the requirements (general and specific)
listed in section 2. Additional requirements can be found in {6, 14].
The specific planning oriented requirements that are expected to
allow us to specify all aspects of software processes and products
seem not to be the problem as far as the information base is con-
cerned. It is not clear at this point, whether all the execution
oriented specific requirements can be easily satisfied with state-of-
the-art database technology. It is not even clear, whether all these
execution-oriented requirements should be deait with inside a per-
sistent database at all. Our first approach to generating a software
engineering information base from process and product

specifications is described in {10].

5207

8. Current Status and Future Work

The specification research goal of our project is to develop a formal
language for specifying all aspects of software processes and pro-
ducts in a complete, consistent and precise way. We do not believe
that all aspects can be formalized in an algorithmic manner. How-»
ever, we believe that even those creative aspects can be described
a5 integrated into the overall software development and mamte-
nance process; this integration would make them accessible o con-
trol to a certain degree. We have developed first prototype lan-
guage definitions and have them manually applied to specify small
but reslistic software engineering scenarios. This limited experi-
ence ssems to indicate that the concepts chosen for our languages.
are promising. We need o further experiment with these languages
and refine them. We believe that feedback [rom a variety of peo-
ple is essential in order to improve them incrementally. It is how-

ever, not realistic to expect other people to apply our languages
manually. Therefore, the most important next step is to prototype
both languages. Out of the list of twelve planning oriented specific
requirements, we are least satisfied with our solution to represent-
ing the relationship between time and space dimensions. Our
current specification approach seems o be too static. It is not pos-
sible to convey to a user the fact that, eg., in the case of our
example in section 4, we have to instantiate the low-level design
process for each module that has been identified during high-level
design (or even for each person and module?). Other important
research aspects are related to the execution-related specific
requirements listed in section 2. Most of all, we have 1o come up
with a good mechanism for instantiating process and product
types.

The information base research goal of our project is wo develop an
(eventually) object oriented information base interface supporting
the planning and execution stages of software projects. The design
of this information base interface is inspired by the software
engineering oriented requirements. Eventually, we would like to
generate customized information bases from process and product
specifications. We have developed a first approach for mapping
process and product specifications into a information base schema
{10, We bave implemented a first prototype information base
(based on relational database technology). This prototype will be
used as a vehicle for validating and improving our approach. For
the future, it is planned to integrate this prototype into the proto-
type of the measurement and evaluation system TAME {2, 3, 4;.

The major future research issues besides refining and automating
our prototype specification languages are wo effectively support the
reuse of process specifications, their tailoring to new project needs,
the different roles of a single process specification (role specific
interpretation of facts), and all the execution oriented specific
requirements listed in section 2.

1. Conclusiona

We are aware of the huge dilemms between the need for specifying
software processes & products and the unsatisfactory degree of
knowledge how to do it properly. Understanding software processes
better is necessary for making progress in software engineering.
Being able 1o specify a process is the fundamental basis for sound
understanding, training, execution, control and improvement as

well as generating appropriate automated support.

Our two prototype specification languages reflect our current
understanding of how to capture the important process and pro-
duct related aspects. We believe strongly that the only way of
improving our current understanding is experience from practical
application. This requires us to have some initial language nota-
tion. This statement should clarify the fact that we do not view

3-18

i

I

ORIGINAL PAoE g
OF POOR GUALITY

these initial language definitions as being final. They represent a
vehicle for further learning. The initial applications {one of which
is described in this paper) have already helped us in understanding
important process specification issues as weil as in giving us a sense
of the potential and limitations of our approach.

We will continue refining our languages based on experience. We
are especially interested in usig;_such process specifications as &
basis for generating customized environment components, e.g. soft-
ware engineering information bases {10]. We hope that this paper
will inspire other groups involved in process specification research
as well as result in feedback from those groups regarding our initial
approach.

8. Ackpowledgements

The authors would like to thank John Marsh and Bradford T.
Ulery for their reviews of an earlier version of this paper; Gregory
A. Hansen and Marc 1. Kellner for organizing a mini-track on soft-
ware engineering processes; and all the reviewers for their many
helpful comments.

€. References

(1] V.R. Basili, "Can We Measure Software Technology: Lessons
Learned from 8 Years of Trying,” Proc. Tenth Annual Soft-
ware Engineering Workshop, NASA Goddard Space Flight
Center, Dec. 1985.

[2] V. R. Basili, H. D. Rombach, "TAME: Tailoring an Ada
Measurement Environment,” Proc. Joint Ada Conference,
Arlington, VA, pp. 318-325, March 1987.

[3] V.R. Basili, H. D. Rombach, "Tailoring the Software Process
to Project Goals and Environments,” Proc. Ninth Interna-
tional Conference on Sofiware Engineering, Monterey, Cali-
fornia, pp. 345-357, March 1987

4, V.R. Basili, H. D. Rombach, *The TAME Project: Towards
Improvement- Orienited Software Environments,” IEEE Tran-
sactions on Software Engineering, vol. SE-14, no.6, pp. 758
773, June 1988,

{3} V.R. Basili, A. J. Turner, "lterative Enhancement: A Practi-
cal Technique for Software Development,” IEEE Transactions
on Software Engineering, vol. SE-1, no. 4, Dec. 1875.

6] P. A Bernstein, "Database System Support for Software
Engineering,” Proc. Ninth International Conference on Soft-
ware Engineering, Monterey, CA, pp. 166-178, March 1987.

[B. W Boehm, "Software Engineering,” IEEE Transactions on
Computers, vol. C-25, no. 12, pp. 1226-1241, Dec. 1978.

{8 B. W. Bochm, "A Spiral Model of Software Developmest and
Enhancement,” ACM Software Engineering Notes, vol. 11,
no. 4, pp. 22-42, Aug. 1986.

[9] M. Dyer, "Cleanroom Software Development Method,” IBM
Federal Systems Division, Bethesda, Maryland, Oct. 1982.

(10] Leo Mark & H. Dieter Rombach, *Generating Customized
Software Engineering Information Bases from Software Pro-
cess and Product Specifications,” Proc. HICSS-22, January
1988,

(11} F. E. McGarry, "Recent SEL Studies,” Proc. Tenth Annual
Software Engineering Workshop, NASA Goddard Space
Flight Center, Dec. 1985.

[12] Proc. Fourth International Workshop on Software Process
Specification, Moretonhampstead, UK, May 1988 [to be pub-
lished in ACM Software Engineering Notes].

5207

[13{ L. Osterweil, "Software Processes are Software Too,” Proc
Ninth Internstional Conference on Software Engineering.
Monterey, CA, pp. 2-13, March 1087,

[14) M. H. Penedo & E. D. Stuckle, "PMDB - A Project Master
Database for Software Engineering Environments,” Proc.
Eighth International Conference on Software Engineering,
London, UK, pp. 150-157, Aug. 1985. .

{15] C. V. Ramamoorthy, Y. Usuda, W. Tsai, and A. Prakash,
"GENESIS: An Integrated Environment for Supporting
Development and Evolution of Software,” Proc. COMPSAC,
1985.

{16] W.W.Royce, "Managing the Development of Large Software
Systems: Concepts and Techniques,” Proc. WESCON, Aug.
1970.

[17] W. W.Royce, "Managing the Development of Large Software
Systems,” Proc. Ninth International Conference on Software
Engineering, Monterey, CA, pp. 328-338, March 1987,

APPENDIX (A): Intermediate Level Langusage Definition:

> START 'LANGUAGE CRAMMAR"
SR_1: <plam> = <precese plan > | <preduc_plaa>
= START PROCESS_PLAN GRAMMAR":
SR_2 <precess plaad iw= <'tk.l_b.l‘h(’> <pracess_bedy >
> START 'PROCESS_PLAN_HEADING GRAMMAR':

SR_3: <precess beodiag> ;= Sprocws (ype_name > - PAOCESS_PLAN <comment>
> START 'PROCESS_PLAN_BODY CRAMMAR':

SR_¢: <precews _bedy > ::m <precws_ _part> <reke_g fication _part >
<ressurce_specificatiod _part > <russurte_ssigoment_part >
> START 'PROCESS_PLAN SPECTFICATION _PART GRAMMAR™

SR_§: <process_specilicetion_pant > = PROCESS_SPECIFICATION_PART:
<commene > <process_jpterface pan> -
<procme_refinemeni_pan > <precess_implementation pen>

> START 'PROCESS_SPECIFICATION_INTERFACE_PART CRAMMAR'":

SR_¢. <precess_interface_part> = INTERFACE_PART:
<comment > <ceorums part > <predue _pan >
CeaaRrEBl_pan>

SR_7: <conrume_part> i CONSUMES: <preduct_type_name_fint>

SR_§: Cpreduce_pani> :=m PRODUCES: <preduct _type_same_fut>

SR_$: <ceastraioi_part> ;e CONSTRAINTS: <conmraist_type_name kot >

> START PROCESS SPECIFICATION _REFINEMENT _PART GRAMMAR®

SR_10: <precwsa_reBoement pari> e REFINEMENT PART:
<commem D> <spuc_Wie_parnt >
<decomporiisn_part>
<cennaction_pan >

SR_11: <spec_use_part> e USE_PART. <apec_use_part bedy >
SR_12: <spec_use_part bedy > 1w <Lbrary_sypea> | <Bbrary_type >, <spac_use psm_bedy >
| <mull>

SR_13: <decomporitien_ peri> == DECOMPOSITION PART. <decomposikion part_bedy >

SR_14: <decomporition pars_bedy > = Cprecess_decompesition _pert>,
<preduct_decs mpatitian part>;
<constraits_decomporiiion pan > | <mulld

SR_15: <process_decampssiion pertD> e <process_decompesitien > |
<procese_d pesitien >, <precems_d Rioa_pary >

SR_18: Cprecess_decumporition> = <precess_type_pame > DECOMPOSES_INTO
<precas_ceRmruct >

SR_17: <precems_cvanrect> wm <SUB_LAN_I>

SR_IE: <preducr_derompasition partD> = Cproduct_decsmpesition |
<preduct_decompesitien >, <product _d ien_pars>

SR_1%: <produrt_dervmpositian> = <preduct_iype_same> DECOMPOSES_INTO
<preduct_consrue>

SR_26: <preduct_conmruci> m= <SUB_LAN_1>

SR_81: <connirsint_decomposiion part> e Cevomraint_decamporition> |
< - _d itiea >, < int_d pesitien_per >

SR_23: <censtraion g Rion > m & imt_type_name> DECOMPOSES_INTO
<conmraini_tonsrecs >

SR_2: <comstraint_conmructd> ::m <SUB_LAN_I>

ORIGINAL PAGE IS
OF POCR QUALITY : i

-
$R_24: <ovaaurinn_pors> 1 CONNECTION PART. Cosanmtian port oty > APPENDIX (B): Process and Product Specification Types
SR_2S: <conparrion pans_bedy> o product permm cessecion B2y Example of section 4
¢ ive.
-

N mum_ervery: PX]
» "":i mupt_hi_ufonr; <3
- commariive > yourden; osums _ii_efors; "0 -
SR_11: <pracem_protem ul--euanl> Cprocam_provam i Y/ = g o

CProcess_proreas_connectine.
Cprecens_proces_coantciioa_list >

" hlerr;
SR_38: Cpredua_precws_ CORBITUNR D> w sype_same> B_INPUT TO d ell;
<procme_Lype_ual w, "'
<pud-n _type_meme> u ouﬂu},ﬂou <process_sype_name> | B ! -

SR_I9: <Procom_procen_calminiien > 1w <SUB-LANGUAGE_1>

pars> PLNMA‘I‘ION}
<_)k--u|h- Fros

SR_3): Smplmmistisg_par _body > zem <SUB_LANGUAGE 2> | <aall>

SR_39: <precws_i

> START 'PROCESS_PLAN_ROLE_SPECTFICATION_PART GRAMMAR':

SR_12: <rele_specification penD> ;= < > <rele port>

SR_13: <reh_pan = <rel> | <releD; <relepan> | <aull>

SR_14: <rele> :me <reole_beader> <role_body >

SR_15: <rele_hesder > e <rele_type_mame>: ROLE

SR_18: <rele_bedy > ;o <role_imverisce pani > <rele_sction_pors >

SR_37: <rele_inserface part> e INTERFACE: <interface lit>

SR_1t: Zinserface_lin> ;e <Lbrary_typeD> | <kbeary_type>, <interface lin>

SR_39: <Tibrary sypeD> :m <precem_type_same> | <M Aype_mame > |
<cuanreat_typy_msme>

SR _40; <role_sction _partD> e <precusm_sype_let >

—> START '‘PROCESS_PLAN_RESOURCE _ASSIGNMENT PART GRAMMAR':

FR_41. <reseuree | pand> wm < > < _uba_pars>
CrEISUrte _MSigament_part >

SR_(2: <rwiswrer Gss_pars> e USE_PART: <rwssurce_use part_body >

SR_¢3: <rvssurce_use_part_bedy > o <resurre_sype_same_lin > : RESOURCE | <muli>

SR_id: pan> i A MENT_PART:

<resource_ssmignmenst_part_bedy >

> START 'PROCESS lFICINCAﬂONJHﬂ.IMD‘TA‘HON PART CRAMMAR":

APPENDIX (C): Process Specification of process "design’
{(Example of section 4.1.):

durign (samel): PROCESS_PLAN
OOMMENT: sessvssvsvas

PROCESS_SPECIFICATION_PART:
COMMENT: ssresswonsas;

CONSUMES: r;
PRODUCES: 4;
CONSTRAINTS: ¢ f, c J;

UST_PART

count_srrere, count_hi_sfiert, couns_Ii_oflors, compute_v: PROCESS_PLAN;

hierr, hiddl, liadl, v: FRODUCT PLAN;

« 3, ¢_d(oame): CONSTRAINT

DECOMPOSITION _PART:

design DECOMFPOSES_INTO M _desigs, U, _design”;

d DECOMPOSES _INTO Md, l‘
CONNECTION PART:

hi_deergn USES 1,

BI_desige FRODUCES bid,

it_desigs PRODUCES B4,

coups_arrars PRODUCES hlerv,

esunt _bi_eflort PRODUCES hidfl,

eoun srt PRODUCES e,

SR_i5: <rvesurcr_amigrment_part bedy> .= <ruwewrce_smighmams > | compute_v USES Iid,
<rmsurce_ssgament > csmpute v PRODUCES v, -
<resource_smigandat_pars > | <sull> bl _devign SEQ {(PARALL (i J-q- n.
eoypt_errers DEPENDS_ON hi_dasige,
SR_¢4: Cremwrtr_smigament > e <rmsurce_\ype_mame > $5_ASSIGNED TO count_bi_cBors DEPENDS_ON b_design,
<rale_type_same> | couns_li_cBert DEFENDS_ON I _dmigs,
<rmeurce_type_same > IS_ASSIGNED_TO <precese_syps_nome> ITER {{il_design.c_e)},
t_) 15_PRE_CONDITION_FOR bl_dwign, _—
{ } c 31 POS‘I‘ _CONDITION_FOR TI_design, i
{) ¢ 2 18_POST_CONDITION FOR bi_dwiga,
c_s IS_PRE CONDI'HDNJ’OI H_desigm;
SR_17: <commami > m COMMENT: <umi> .
SR_48: <pracess_type_same linnD = Cprecam_type_same > | <procwme_type_same >;
<preces_type_name_lisn > | <pull> TMPLEMENTATION PART:
SR_i9: <praduct ypi_ssme_liet D> = <preduci _type_name | <M¢ AyPR_BAEe D COMMENT: *osvssvvsnans
<praduct_type_sesme_lind> | <aull> e e —_—
SR_48: ‘<caastraint_type_ssme_les > : <rourtraint_type_name > | <comnsraint_\ype_mame>>; -
<contirami_type_nsme_Res > | <sull ROLE_SPECIFICATION _PART: —
SR_E1: <rereurce_type_asme lin> ;= <ressurce_sype_ssma > | <reseurce _Sype_named; MENT: sseusr
N <resource _type _name_knD> | <aull>
SR_32: <rele_type_same lit > = Zrele_sype_ n-c>| <rele_type_mamel>; design_rele: ROLE
<esle \ypessme_bu > | <aull INTERFACE:r hid, BMd.c_1, ¢ 3, ¢ B, c_¢
> ACTIONS: hi_design, §_devign —
quskity_sseurance_rels: ROLE -
INTERFACE: ¢_1, ¢ 2, ¢ 3, c_d, bierr, hidll, Haff, v
bi_deeign, ¥ _design, Ad
ACTIONS: coust_trrory, count_bi_efert, coust_H_olfors,
SR_i9: <SUB_LANGUAGE 1> = Regulsr aaproviion language for preces sad preduce iype ompute_vy
ames (un-q SEQUENCE, ALTERNATION ITERATION, lnd PARALLIUW) -
SR_9: <SUB J.ANGUAGE 4> = Any kind of fermal or infermal lasguage reprenestotion masagTmIn Tl NOLE
ip of a process . = J—
SR_00: <nell> = ACTIONS: -—
RESOURCE_ASSICNMENT _PART:
COMMENT, *0¢ssenenn
USE_PART: -
.l o Lo
CONNECTION_PART:
p.) IS_ASSIGNED TO M l-m‘
$3 15_ASSIGNED_TO B_des: L
».2 I5_ASSICNED.TO ¥ dm;-. —
_3 15_ASSICNED _TO B_desiqn, - —
P4 IS_ASSIGNED _TO quality_assurasce_rels, —
#3 IS ASSIGNED_TO managemens_role,
-
3-20 -

5207

758 - {EEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 6. JUNE 1988

The TAME Project: Towards Improvement-Oriented
Software Environments

VICTOR R. BASILI, sENIOR MEMBER, IEE, aND H. DIETER ROMBACH

Abstract—Experience from a dozen years of analyzing software en-
gineering processes and products is summarized as a set of software
engineering and measurement principles that argue for software en-
gineering process models that integrate sound planning and analysis
into the construction process.

In the TAME (Tailoring A Measurement Environment) project at
the University of Maryland we have developed such an improvement-
oriented software engineering process model that uses the goal/ques-
tion/metric paradigm to integrate the constructive and analytic aspects
of software development. The model provides a mechanism for for-
malizing the characterization and planning tasks, controlling and im-
proving projects based on quantitative analysis, learning in a deeper
and more systematic way about the software process and product, and
feeding the appropriate experience back into the current and future
projects.

The TAME system is an instantiation of the TAME software engi-
neering process model as an ISEE (Integrated Software Engineering
Enviconment). The first in a series of TAME system prototypes has
been developed. An assessment of experience with this first limited pro-
totype is presented including a reassessment of its initial architecture.
The long-term goal of this building effort is to develop a better under-
standing of appropriate ISEE architectures that optimally support the
improvement-oriented TAME software engineering process model.

Index Terms—Characterization, execution, experience, feedback,
formalizing, goal/question/metric paradigm, improvement paradigm,
integrated software engineering environments, integration of construc-
tion and analysis, learning, measurement, planning, quantitative anal-
ysis, software engineering process models, tailoring, TAME project,
TAME system.

1. INTRODUCTION

XPERIENCE from a dozen years of analyzing soft-
ware engineering processes and products is summa-
rized as a set of ten software engineering and fourteen
measurement principles. These principles imply the need
for software engineering process models that integrate
sound planning and analysis into the construction process.
Software processes based upon such improvement-ori-
ented software engineering process models need to be tai-
lorable and iractable. The tailorability of a process is the
characteristic that allows it to be altered or adapted to suit

Manuscript received January |5, 1988. This work was supported in pan
by NASA under Grant NSG-5123, the Air Force Office of Scientific Re-
search under Grant F49620-87-0130, and the Office of Naval Research un-
deg Grant NOOO14-85-K-0633 to the University of Maryland. Computer
time was provided in pan through the facilities of the Computer Science
Center of the University of Maryland.

The authors arc with the Depariment of Computer Science and the In-
stitute for Advanced Computer Studies, University of Maryland, College
Park, MD 20742.

IEEE Log Number 8820962.

a set of special needs or purposes [64]. The software en-
gineering process requires tailorability because the over-
all project execution model (life cycle model), methods
and tools need to be altered or adapted for the specific
project environment and the overall organization. The
tractability of a process is the characteristic that allows it
to be easily planned, taught, managed, executed, or con-
trolled [64]. Each software engineering process requires
tractability because it needs to be planned, the various
planned activities of the process need to be communicated
to the entire project personnel, and the process needs to
be managed, executed, and controlled according to these
plans. Sound tailoring and tracking require fop-down
measurement (measurement based upon operationally de-
fined goals). The goal of a software engineering environ-
ment (SEE) should be to support such tailorable and tract-
able software engineering process models by automating
as much of them as possible.

In the TAME (Tailoring A Measurement Environment)
project at the University of Maryland we have developed
an improvement-oriented software engineering process
model. The TAME system is an instantiation of this TAME
software engineering process model as an ISEE (Inte-
grated SEE).

It seems appropriate at this point to clarify some of the
important terms that will be used in this paper. The term
engineering comprises both development and mainte-
nance. A software engineering project is embedded in
some project environment (characterized by personnel,
type of application, etc.) and withih some organization
{e.g., NASA, IBM). Software engineering within such a
project environment or organization is conducted accord-
ing to an overall software engineering process model (one
of which will be introduced in Section II-B-3). Each in-
dividual software project in the context of such a software
engineering process model is exeucted according to some
execution model (e.g., waterfall model [28], {58], itera-
tive enhancement model [24], spiral model [30]) supple-
mented by techniques (methods, tools). Each specific in-
stance of (a part of) an execution model together with its
supplementing methods and tools is referred to as execu-
tion process (including the construction as well as the
analysis process). In addition, the term process is fre-
quently used as a generic term for various kinds of activ-
ities. We distinguish between constructive and analytic
methods and tools. Whereas constructive methods and
tools are concerned with building products, analytic

0098-5589/88/0600-0758801.00 © 1988 IEEE

3-21

5207

BASILI AND ROMBACH:. THE TAME PROJECT

method and tools are concermed with analyzing the con-
structive process and the resulting products. The body of
experience accumulated within a project environment or
organization is referred to as experience base. There exist
at least three levels of formalism of such experience bases:
darabase (data being mdlvndual products or processes),
information base (information being data viewed through
some superimposed structure), and knowledge base
(knowledge implying the ability to derive new insights via
deduction rules). The project personnel are categorized as
either engineers (e.g., designers, coders, testers) or man-
agers. - 7

This paper is structured into a presentation and discus-
sion of the improvement-oriented software engineering
process model underlying the TAME project (Section II),
its automated support by the TAME system (Section 1II),
and the first TAME system prototype (Section IV). In the
first part of this paper we list the empirically derived les-
sons learned (Section [1-A) in the form of software engi-
neering principles (Section [I-A-1), measurement princi-
ples (Section [1-A-2), and motivate the TAME project by
stating several implications derived from those principles
(Section [I-A-3). The TAME project (Section II-B) is pre-
sented in terms of the improvement paradigm (Section
II-B-1), the goal/question/metric paradigm as a mecha-
nism for formalizing the improvement paradigm (Section
11-B-2), and the TAME project model as an instantiation
of both paradigms (Section 1I-B-3). In the second part of
this paper we introduce the TAME system as an approach
to automatically supporting the TAME software engi-
neering process model (Section lII). The TAME system
is presented in terms of its requirements (Section III-A)
and architecture (Section ITI-B). In the third part of this
paper, we introduce the first TAME prototype (Section
IV) with respect to its functionality and our first experi-
ences with it.

IL. SOFTWARE ENGINEERING PROCESS

Our experience from measuring and evaluating soft-
ware engineering processes and products in a variety of
project environments has been summarized in the form of
lessons learned (Section II-A). Based upon this experi-
ence the TAME prgject has produced an improvement-
oriented process model (Section 1I-B).

A. Lessons Learned from Past Experience

We have formulated our experience as a set of software
engineering principles (Section [I-A-1) and measurement
principles (Section II-A-2). Based upon these pnn(:lples a
number of implications for sound software engineering
process models have been derived (Section [1-A-3).

1) Software Engineering Principles: The first five
software engineering principles address the need for de-
veloping quality a priori by introducing engineering dis-
cipline into the field of software engineering:

(P1) We need to clearly distinguish between the role of
constructive and analytic activities. Only improved con-
struction processes will result in higher quality software.
Quality cannot be tested or inspected into software. An-

759

alytic processes (e.g., quality assurance) cannot serve as
a substitute for constructive processes but will provide
control of the constructive processes [27], [37]. [61].

{P2) We need to formalize the planning of the con-
struction process in order to develop quality a priori [3],
[16]. [19], {25]. Without such plans the trial and error
approach can hardly be avoided.

(P3) We need to formalize the analysis and improve-
ment of conStruction processes and products in order to
guarantee an organized approach to software engineering
3. [25]. .

(P4) Engineering methods require analysis to deter-
mine whether they are being performed appropriately, if
at all. This is especially important because most of these
methods are heuristic rather than formal [42], [49], [66].

(P5) Software engineers and managers need real-time
feedback in order to improve the construction processes
and products of the ongoing project. The organization
needs post-mortem feedback in order to improve the con-
struction processes and products for future projects [66].

The remaining five software engineering principles ad-
dress the need for tailoring of planning and analysis pro-
cesses due to changing needs form project to project and
environment to environment:

(P6) All project environments and products are differ-
ent in some way {2}, [6€]. These differences must be made
explicit and taken into account in the software execution
processes and in the product quality goals {3], [16]. [19],
[25].

(P7) There are many execution models for software en-

gineering. Each execution model needs to be tailored to

the organization and project needs and characteristics (2],

[13]. [16]. [86].

(P8) We need to formalize the tailoring of processes

toward the quality and productivity goals of the project .

and the characteristics of the project environment and the
organization [16]. It is not easy to apply abstractly defined
methods to specific environments.

(P9) This need for tailoring does not mean starting from
scratch each time. We need to reuse experience, but only.
after tailoring it to'the project [1]. {2]. [6}, {7]. [18]. [3Z].

(P10) Because of the constant need for tailoring, man-
agement control is crucial and must be flexible. Manage-
ment needs must be supponed in this software engineer-
ing process.

A more detailed discussion of these software engineer-
ing principles is contained in [17].

2) Software Measurement Principles: The first four
measurement principles address the purpose of the mea-
surement process, i.¢., why should we measure, what
should we measure, for whom should we measure:

(M1) Measurement is an ideal mechanism for charac-
terizing, evaluating, predicting. and providing motivation
for the various aspects of software construction processes
and products {3], [4]. [9]. [16]. [21]. [25], [48]. [56].
[57]. It is a common mechanism for relating these multi-
ple aspects.

(M2) Measurements must be taken on both the soft-

3-22

5207

il

‘

n

ng

=
L]

760 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 6. JUNE 1988

ware processes and the various software products [1]. [5].
[14]. [29]. [38]. {40]. [42]-[44]. {47}, [54]-[56]. [65].
{66]. Improving a product requires understanding both the
product and its construction processes.

(M3) There are a variety of uses for measurement. The
purpose of measurement should be clearly stated. We can
use measurement to examine cow . effectiveness, reliabil-
ity, correctness, maintainability, efficiency, user friendli-
ness, etc. [8]-110]. [13], [14]. [16], [20]. [23], [25]. [41],
{53]. [57]. [61].

(M4) Measurement needs to be viewed from the appro-
priate perspective. The corporation, the manager, the de-
veloper, the customer’s organization and the user each
view the product and the process from different perspec-
tives. Thus they may want to know different things about
the project and to different levels of detail [3]. [16]. [19].
[25]. [66].)

The remaining ten measurement principles address met-
rics and the overall measurement process. The first two
principles address characteristics of metrics (i.e., what
kinds of metrics, how many are needed). while the latter
eight address characteristics of the measurement process
(i.e., what should the measurement process look like, how
do we support characterization, planning, construction,
and leaming and feedback):

(M5) Subjective as well as objective metrics are re-
quired. Many process, product and environment aspects
can be characterized by objective metrics (e.g., product
complexity, number of defects or effort related to pro-
cesses). Other aspects cannot be characterized objectively
yet (e.g., experience of personnel, type of application,
understandability of processes and products); but they can
at least be categorized on a quantitative (nominal) scale
to a reasonable degree of accuracy {4], [5], [16], [48],
[56].

(M6) Most aspects of software processes and products
are too complicated to be captured by a single metric. For
both definition and interpretation purposes, a set of met-
rics (a metric vector) that frame the purpose for measure-
ment needs to be defined [9].

(M7) The development and maintenance environments
must be prepared for measurement and analysis. Planning
is required and needs to be carefully integrated into the
overall software engineering process model. This plan-
ning process must take into account the experimental de-
sign appropriate for the situation [3], [14], [19]. [22],
[66].

(M8) We cannot just use models and metrics from other
environments as defined. Because of the differences
among execution models (principle P7), the models and
metrics must be tailored for the environment in which they
will be applied and checked for validity in that environ-
E;EI(ZI,[6]-I8].[12],[23],[31].[40].[47].[50],[51L

(M9) The measurement process must be top-down
rather than bottom-up in order to define a set of opera-
tional goals, specify the appropriate metrics, permit valid

contextual interpretation and analysis, and provide feed-
back for tailorability and tractability [3], [16], [19], [25].

(M10) For each environment there exists a character-
istic set of metrics that provides the needed information
for definition and interpretation purposes {21].

(M11) Multiple mechanisms are needed for data col-
lection and validation. The nature of the data to be col-
lected (principle M5) determines the appropriate mecha-
nisms [4], [25], [48]. e.g., manually via forms or
interviews, or automatically via analyzers.

(M12) In order to evaluate and compare projects and
to develop models we need a historical experience base.
This experience base should characterize the local envi-
ronment [4], [13], [25], [34], [44], [48].

(M13) Metrics must be associated with interpretations,
but these interpretations must be given in context [3], [16],
[19], [25], [34], [56].

(M14) The experience base should evolve from a da-
tabase into a knowledge base (supported by an expert sys-
tem) to formalize the reuse of experience [11]. [14].

A more detailed discussion of these measurement prin-
ciples is contained in {17}.

3} Implications: Clearly this set of principles is not
complete. However, these principles provide empirically
derived insight into the limitations of traditional process
models. We will give some of the implications of these
principles with respect to the components that need to be
included in software process models, essential character-
istics of these components, the interaction of these com-
ponents, and the needed automated support. Although
there is a relationship between almost all principles and
the derived implications, we have referenced for each im-
plication only those principles that are related most di-
rectly.

Based upon our set of principles it is clear that we need
to berter understand the software construction process and
product (e.g., principles P1, P4, P6, M2, M5, M6, M8,
M9, M10, M12). Such an understanding will allow us to
plan what we need to do and improve over our current
practices (e.g., principles P1, P2, P3, P7, P8, M3, M4,
M7, M9, M14). To make those plans operational, we
need to specify how we are going to affect the construc-
tion processes and their analysis (e.g., principles P1, P2,
P3, P4, P7, P8, M7, M8, M9, MI14). The execurion of
these prescribed plans involves the construction of prod-
ucts and the analysis of the constructive processes and
resulting products {e.g., principles P1, P7).

All these implications need to be integrated in such a
way that they allow for sound learning and feedback so
that we can improve the software execution processes and
products (e.g., principles_B1, P3, P4, P5, P9, P10, M3,
M4, M9, M12, M13, M14). This interaction requires the
integration of the constructive and analytic aspects of the
software engineering process model (e.g., principles P2,
M7, M9).

The components and their interactions need to be for-
malized so they can be supported properly by an ISEE

3-23

5207

BASILI AND ROMBACH; THE TAME PROJECT

(e.g., principles P2, P3, P8, P9, M9). This formalization
must include a structuring of the body of experience so
that characterization, planning, learning, feedback, and
improvement can take place (e.g., principles P2, P3, P8,
P9, M9). An ideal mechanism for supporting all of these
components and their interactions is quantitative analysis
(e.g., principles P3, P4, M1, M2, M5, M6, M8, M9,
MI0, M11, M13). -

B. A Process Model: The TAME Project

The TAME (Tailoring A Measurement Environment)
project at the University of Maryland has produced a soft-
ware engineering process model (Section II-B-3) based
upon our empirically derived lessons learned. This soft-
ware engineering process model is based upon the im-
provement (Section I1-B-1) and goal/question/metric par-
adigms (Section II-B-2). ’

1) Improvemen:t Paradigm: The improvement para-
digm for software engineering processes reflects the im-
plications stated in Section II-A-3. It consists of six major
steps [3}):

(11) Characterize the current project environment.

(I2) Set up goals and refine them into quantifiable ques-
tions and- metrics for successful préject performance and
improvement over previous project performances.

(I3) Choose the appropriate software project execution
model for this project and supporting methods and tools.

(I4) Execute the chosen processes and construct the
products, coilect the prescribed data, validate it, and pro-
vide feedback in real-time.

(15) Analyze the data to evaluate the current practices,
determine problems, record the findings, and make rec-
ommendations for improvement.

(I6) Proceed to Step I1 to start the next project, armed
with the experience gained from this and previous proj-
ects.

This paradigm is aimed at providing a basis for corpo-
rate learning and improvement. Improvement is only pos-
sible if we a) understand what the current status of our
environment is (step II), b) state precise improvement
goals for the particular project and quantify them for the
purpose of control (step 12), c) choose the appropriate
process execution models, methods, and tools in order to
achieve these improvement goals (step 13), execute and
monitor the project performance thoroughly (step 14), and
assess it (step 15). Based upon the assessment results we
can provide feedback into the ongoing project or into the
planning step of future projects (steps I5 and I6).

2) Goal/Question/Merric Paradigm: The goal/ques-
tion/metric (GQM) paradigm is intended as a mechanism
for formalizing the characterization, planning, construc-
tion, analysis, leamning and feedback tasks. It represents
a systematic approach for setting project goals (tailored
to the specific needs of an organization) and defining them
in an operational and tractable way. Goals are refined into
a set of quantifiable questions that specify metrics. This
paradigm also supports the analysis and integration of

761

metrics in the context of the questions and the original
goal. Feedback and leamning are then performed in the
context of the GQM paradigm.

The process of setting goals and refining them into
quantifiable questions is complex and requires experi-
ence. In order to support this process, a set of remplares
for setting goals, and a set of guidelines for deriving ques-
tions and metrics has been developed. These templates
and guidelines reflect our experience from having applied
the GQM paradigm in a variefy of environments (e.g.,
NASA [4], [17], (48], IBM [60], AT&T, Burroughs [56],
and Motorola). We received additional feedback from
Hewlett Packard where the GQM paradigm has been used
without our direct assistance [39]. It needs to be stressed
that we do not claim that these templateés and guidelines
are complete; they will most likely change over time as
our experience grows. Goals are defined in terms of pur-
pose, perspective and environment. Different sets of
guidelines exist for defining product-related and process-
related questions. Product-related questions are formu-
lated for the purpose of defining the product (e.g., phys-
ical attributes, cost, changes, and defects, context), de-
fining the quality perspective of interest (e.g., reliability,
user friendliness), and providing feedback from the par-
ticular quality perspective. Process-related questions are
formulated for the pirpcse of defining the process (quality
of use, domain of use), defining the quality perspective
of interest (e.g., reduction of defects, cost effectiveness
of use), and providing feedback from the particular qual-
ity perspective == " T e)

* Templates/Guidelines for Goal Definition:

Purpose: To (characterize, evaluate, predict, moti-
vate, etc.) the (process, product, model, metric, etc.) in
order to (understand, asséss, manage, engineer, leam,
improve, etc.) it.

Example: To evaluate the system testing methodology
in order to improve it.

. Perspective: Examine the (cost, effectiveness, cor-
rectness, defects, changes, product metrics, reliability,
etc.) from the point of view of the (developer, manager,
customer, corporate perspective, etc.)

Example: Examine the effectiveness from the devel-
oper’s point of view,

Environment: The environment consists of the fol-
lowing: process factors, people factors, problem factors,
methods, tools, constraints, etc.

Example: The product is an operating system that must
fit on a PC, etc.

* Guidelines for Product-Related Questions:

For each product under study there are three major
subgoals that need to be addressed: 1) definition of the
product, 2) definition of the quality perspectives of inter-
est, and 3) feedback related to the quality perspectives of
interest.

Definition of the product includes questions related to
physical attributes (a quantitative characterization of the
product in terms of physical attributes such as size, com-

3-24

5207

"
1
H‘\

14

all

' I |

t

Kl

[

il

18

1

762 1EEE TRANSACTIONS ON SOFT-WARE ENGINEERING. VOL. 14, NO. 6. JUNE 1988

<

plexity, etc.), cost (a quantitative characterization of the
resources expended related to this product in terms of ef-
fort, computer time, etc.), changes and defects (a quan-
titative characterization of the errors, faults, failures, ad-
aplations, and enhancements related to this product), and
context (a quantitative characterization of the customer
community using this product and their operational pro-
files).

Qualirv perspectives of interest includes, for each
quality perspective of interest (e.g., reliability . user friend-
liness), questions related to the major model(s) used (a
quantitative specification of the quality perspective of in-
terest), the validity of the model for the particular envi-
ronment (an analysis of the appropriateness of the model
for the particular project environment), the validity of the
data collected (an analysis of the quality of data), the
model effectiveness (a quantitative characterization of the
quality of the results produced according to this model),
and a substantiation of the model (a discussion of whether
the results are reasonable from various perspectives).

Feedback includes questions related to improving the
product relative 10 the quality perspective of interest (a
quantitative characterization of the product quality, major
problems regarding the quality perspective of interest, and
suggestions for improvement during the ongoing project
as well as during future projects).

¢ Guidelines for Process-Related Questions

For each process under study, there are three major
subgoals that need to be addressed: 1) definition of the
process, 2) definition of the quality perspectives of inter-
est, and 3) feedback from using this process relative to
the quality perspective of interest.

Definition of the process includes questions related to
the quality of use (a quantitative characterization of the
process and an assessment of how well it is performed),
and the domain of use (a quantitative characterization of
the object to which the process is applied and an analysis
of the process performer's knowledge concering this ob-
ject).

Quality perspectives of interest follows a pattern sim-
ilar to the corresponding product-oriented subgoal includ-
ing, for each quality perspective of interest (e.g., reduc-
tion of defects, cost effectiveness), questions related to
the major model(s) used, and validity of the model for the
particular environment, the validity of the data collected,
the model effectiveness and the substantiation of the
model).

Feedback follows a pattern similar to the correspond-
ing product-oriented subgoal.

s Guidelines for Metrics, Data Collection, and
Interpretation:

«The choice of metrics is determined by the quantifiable
questions. The guidelines for questions acknowledge the
need for generally more than one metric (principle M6),
for objective and subjective metrics (principle M35), and
for associating interpretations with metrics (principle
M13). The actual GQM models generated from these tem-

5207

plates and guidelines will differ from project to proiect
and organization to organization (principle M6). This re-
flects their being tailored for the different needs in differ-
ent projects and organizations (principle M4). Depending
on the type of each metric, we choose the appropriate me-
chansims for data collection and validation (principle
M11). As goals, questions and metrics provide for tract-
ability of the (top-down) definitional quantification pro-
cess, they also provide for the interpretation context (bot-
tom-up). This integration of definition with interpretation
allows for the interpretation process to be tailored to the
specific needs of an environment (principle M8).

3) Improvement-Oriented Process Model: The
TAME software engineering process model is an instan-
tiation of the improvement paradigm. The GQM para-
digm provides the necessary integration of the individual
components of this model. The TAME software engi-
neering process model explicitly includes components for
(C1) the characterization of the current status of a project
environment, (C2) the planning for improvement inte-
grated into the execution of projects, {C3) the execution
of the construction and analysis of projects according to
the project plans, and (C4) the recording of experience
into an experience base. The leamning and feedback mech-
anism (C5) is distributed throughout the model within and
across the components as information flows from one
component to another. Each of these tasks must be dealt
with from a constructive and analytic perspective. Fig. |
contains a graphical representation of the improvement-
oriented TAME process model. The relationships (arcs)
among process model components in Fig. 1 represent in-
formation flow.

(C1) Characterization of the current environment is re-
quired to understand the various factors that influence the
current project environment. This task is important in or-
der to define a starting point for improvemient. Without
knowing where we are, we will not be able to judge
whether we are improving in our present project. We dis-
tinguish between the constructive and analytic aspects of
the characterization task to emphasize that we not only
state the environmental factors but analyze them to the de-
gree possible based upon data and other forms of infor-
mation from prior projects. This characterization task
needs to be formalized.

(C2) Planning is required to understand the project
goals, execution needs, and project focus for learning and
feedback. This task is essential for disciplined software
project execution (i.e., executing projects according to
precise specifications of processes and products). It pro-
vides the basis for improvement relative to the current sta-
tus determined during chagacterization. In the planning
task, we distinguish betweeh the constructive and analytic
as well as the ‘‘what’’ and ‘‘how’’ aspects of planning.
Based upon the GQM paradigm all these aspects are highly
interdependent and performed as a single task. The de-
velopment of quantitatively analyzable goals is an itera-
tive process. However, we formulate the four planning as-

ORIGINAL PAGE IS -
OF POOR QUALITY

-
BASILI AND ROMBACH: THE TAME PROJECT 763
e - C2:
As| i .
pcr:&‘}a‘ characterising C2.1: what plln:nm C2.2: bow “:i:'ﬂn' -
con | __caay C3.1
strue- _"'. pl“ I
" for construct -
tive characterise | et i | construction "
- L — L 3
" e . =
Tytie ‘ toslyrs ,,y %
[or ¥ & § Csa
A 4 r
y A 4 r y
KRR S AL -
FEEDBACK LOOPS FOR FUTURE PROJECTS
C4: EXPERIENCE BASE =
Fig. 1. The improvement-oriented TAME software process model. -
pects as four separate components to emphasize the (component C2.2.1) goes hand in hand with fine-tuning —
differences between creating plans for development and the analysis procedures derived during the analytic per- -
making those plans analyzable. as well as between stating spective of the **what" planning (component C2.2.2).
what it is you want to accomplish and stating how you (C2.2.1) Planning for construction includes choos-
plan to tailor the processes and metrics to do it. " ing the appropriate execution model, methods and tools =
(C2.1) **What'" Planning deals with choosing, as- to fulfill the project goals. Tt should be clear that effective
signing priorities, and operationally defining, to the de- planning for construction depends on well-defined project
gree possible. the project goals from the constructive and goals from both the constructive and analytic perspective .
analytic perspectives. The actual goal setting is an instan- (component C2.1). ‘ I=
tiation of the front-end of the GQM paradigm (the tem- (C2.2.2) Planning for analysis addresses the fine- -
plates/guidelines for goal definition). The constructive tuning of the operational definition of the analytic goal
perspective addresses the definition of project goals such perspective (derived as part of component C2.1) towards —
as on-time delivery. the appropriate functionality to sat- the specific choices made during planning for construc- =
isfy the user, and the analysis of the execution processes tion (C2.2.1). The actual planning for analysis is an in- =
we are applying. Some of these goals might be stated as stantiation of the back-end of the GQM paradigm: details
improvement goals over the current state-of-the-practice need to be filled in (e.g.. quantifiable questions, metrics) ==
as characterized in component C1. These goals should be based upon the specific methods and tools chosen. =
prioritized and operationally defined to the extent possible (C3) Execution must integrate the construction (com- -
without having chosen the particular construction models. ponent C3.1) with the analysis (component C3.2). Anal-
methods and tools yet. The analytic perspective addresses ysis (including measurement) cannot be an add-on but .
analysis procedures for monitoring and controlling must be part of the execution process and drive the con- = §
whether the goals are met. This analytic goal perspective struction. The eXécution plans derived during the plan- -
should prescribe the necessary leaning and feedback ning task are supposed to provide for the required inte-
paths. It should be operationally defined to the extent al- gration of construction and analysis. e
lowed by the degree of precision of the constructive goal (C4) The Experience Base includes the entire body of %

perspective.

(C2.2) “*How’" Planning is based upon the results
from the *‘what’" planning (providing for the purpose and
perspective of a goal definition according to the GQM
paradigm front-end) and the characterization of the envi-
ronment (providing for the environment part of a goal def-
inition according to the GQM paradigm front-end). The
“*how’" planning involves the choice of an appropriately

experience that is actively available to the project. We can
characterize this experience according to the following di-
mensions: a) the degree of precision/detail. and b) the de-
gree to which it is tailored to meet the specific needs of
the project (context). The precision/detail dimension in-
volves the level of detail of the experimental design and
the level and quality of data collected. On one end of the

spectrum we have detailed objective quantitative data that

tailored execution model, methods and tools that permit allows us to build mathematically tractable models. On

the building of the system in such a way that we can ana- the other end of the spectrum we have interviews and

lyze whether we are achieving our stated goals. The par- qualitative information that provide guidelines and *‘les- =

ticular choice of construction processes. methods and tools ~ sons learned documents™, and permit the better formu- -
: -

5207

764

lation of goals and questions. The level of precision and
detail affects our level of confidence in the results of the
experiment as well as the cost of the data collection pro-
cess. Clearly priorities play an imponant role here. The
context dimension involves whether the focus is to learn
about the specific project, projects within a specific ap-
plication domain or general truths about the software pro-
cess or product (requires the incorporation of formalized
experience from prior projects into the experience base).
Movement across the context dimension assumes an abil-
ity to generalize experience to a broader context than the
one studied, or to tailor experience to a specific project.
The better this experience is packaged, the better our un-
derstanding of the environment. Maintaining a body of
experience acquired during a number of projects is one of

‘the prerequisites for learning and feedback across envi-

ronments.)

(CS) Leaming and Feedback are integrated into the
TAME process model in various ways. They are based
upon the experimental model for leamning consisting of a
set of steps, starting with focused objectives, which are
turned into specific hypotheses, followed by running ex-
periments to validate the hypotheses in the appropriate en-
vironment. The model is iterative; as we learn from ex-
perimentation, we are better able to state our focused
objectives and we change and refine our hypotheses.

This model of leaming is incorporated into the GQM
paradigm where the focused objectives are expressed as
goals, the hypotheses are expressed as questions written
to the degree of formalism required, and the experimental
environment is the project, a set of projects in the same
domain, or a corporation representing a general environ-
ment. Clearly the GQM paradigm is also iterative.

The feedback process helps generate the goals to influ-
ence one or more of the components in the process model,
€.g., the characterization of the environment, or the anal-
ysis of the construction processes or products. The level
of confidence we have in feeding back the experience to
a project or a corporate environment depends upon the
precision/detail level of the experience base (component
C4) and the generality of the experimental environment
in which it was gathered.

The leamning and feedback process appears in the model
as the integration of all the components and their inter-
actions as they are driven by the improvement and GQM
paradigms. The feedback process can be channeled to the
various components of the current project and to the cor-
porate experience base for use in future projects.

Most traditional software engineering process models
address only a subset of the individual components of this
model; in many cases they cover just the constructive as-
pects of characterization (component C1), ‘*how’’ plan-
ning (component C2.2.1), and execution (component
C3.1). More recently developed software engineering
process models address the constructive aspect of execu-
tion (component C3.1) in more sophisticated ways (e.g.,
new process models [24],[30], [49], combhine various pro-
cess dimensions such as technical, managerial, contrac-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4. NO. 6. JUNE 1988

tual [36], or provide more flexibility as far as the use of
methods and tools is concemed, for example via the au-
tomated generation of tools [45], {63]), or they add meth-
ods and tools for choosing the analytical processes, meth-
ods, and tools (component C3.2.2) as well as actually
performing analysis (component C3.2) [52], [59]. How-
ever, all these process models have in common the lack
of completely integrating all their individual components
in a systematic way that would permit sound learning and
feedback for the purpose of project control and improve-
ment of corporate experience.

III. AuTOMATED SuPPORT THROUGH ISEEs: THE
TAME SvysTEM

The goal of an Integrated Software Engineering Envi-
ronment (ISEE) is to effectively support the improvement-
oriented software engineering process model described in
Section I1-B-3: An ISEE must support all the model com-
ponents (characterization, planning, execution, and theex-
perience base), all the local interactions between model
components, the integration, and formalization of the
GQM paradigm, and the necessary transitions between the
context and precision/detail dimension boundaries in the
experience base. Supporting the transitions along the ex-
perience base dimensions is needed in order to allow for
sound learning and feedback as outlined in Section II-B-3
(component C5).

The TAME system will automate as many of the com-
ponents, interactions between components and supporting
mechanisms of the TAME process model as possible. The
TAME system development activities will concentrate on
all but the construction component {(component C3.1) with
the eventual goal of interfacing with constructive SEEs.
In this section we present the requirements and the initial
architecture for the TAME system.

A. Reguirements

The requirements for the TAME system can be derived
from Section II-B-3 in a natural way. These requirements
can be divided into external requirements (defined by and
of obvious interest to the TAME system user) and internal
requirements (defined by the TAME design team and re-
quired to support the external requirements properly).

The first five (external) requirements include support
for the characterization and planning components of the
TAME model by automating an instantiation of the GQM
paradigm, for the analysis component by automating data
collection, data validation and analysis, and the learning
and feedback component by automating interpretation and
organizational leamning. We will list for each external
TAME system requirement the TAME process model
components of Section TI-B-3 from which it has been de-
rived.

External TAME requirements:

(R1) A mechanism for defining the constructive and
analytic aspects of project goals in an operational and
quantifiable way (derived from components C1, C2.1,
C2.2.2,C3.2).

We use the GQM paradigm and its templates for defin-

3-27

5207

BASILI AND ROMBACH: THE TAME PROJECT

ing goals operationally and refining them into quantifiable
questions and metrics. The selection of the appropriate
GQM model and its tailoring needs to be supported. The
user will either select an existing model or generate a new
one. A new model can be generated from scratch or by
reusing pieces of existing models. The degree to which
the selection, generation, afid reuse tasks can be sup-
ported automatically depends largely on the degree to
which the GQM paradigm and its templates can be for-
malized. The user needs to be supported in defining his/
her specific goals according to the goal definition tem-
plate. Based on each goal definition, the TAME system
will search for.a model in the experience base. If no ap-
propriate model exists, the user will be guided in devel-
oping one. Based on the tractability of goals into subgoals
and questions the TAME system will identify reusable
pieces of existing models and compose as much of an ini-
tial model as possible. This initial model will be com-
pleted with user interaction. For example, if a user wants
to develop a model for assessing a system test method
used in a particular environment, the system might com-
pose an initial model by reusing pieces from a model as-
sessing a different test method in the same environment,
and from a model for assessing the same system test
method in a different environment. A complete GQM
model includes rules for interpretation of metrics and
guidelines for collecting the prescribed data. The TAME
system will automatically generate as much of this infor-
mation as possible. -

(R2) The automatic and manual collection of data and
the validation of manually collected data (derived from
component C3.2).

The collection of all product-related data (e.g.. lines of
code, complexity) and certain process-related data (e.g..
number of compiler runs, number of test runs) will be
completely automated. Automation requires an interface
with construction-oriented SEEs. The collection of many
process-related data (e.g., effor, changes) and subjective
data (e.g., experignce of personnel, characteristics of
methods used) cannot be automated. The schedule ac-
cording to which measurement tools are run needs to be
defined as part of the planning activity. It is possible to
collect data whenever they are needed, periodically (e.g.,
always at a particular time of the day), or whenever
changes of products occur (e.g., whenever a new product
version is entered into the experience base all the related
metrics are recomputed). All manually collected data need
to be validated. Validating whether data are within their
defined range, whether all the prescribed data are col-
lected, and whether certain integrity rules among data are
maintained will be automated. Some of the measurement
tools will be developed as part of the TAME system de-
velopment project, others will be imported. The need for
importing measurement tools will require an effective in-
terconnection mechanism (probably an interconnection
language) for integrating tools developed in different lan-
guages.]

(R3) A mechanism for controlling measurement and
analysis (derived from component C3.2).

765

A GOM model is used to specify and control the exe-
cution of a particular analysis and feedback session. Ac-
cording to each GQM model, the TAME system must
trigger the execution of measurement tools for data col-
lection, the computation of all metrics and distributions
prescribed, and the application of statistical procedures.
If certain metrics or distributions cannot be computed due
to the lack of data or measurement tools, the TAME Sys-
tem must inform the user.

(R4) A mechanism for interpreting analysis results in a
context and providing feedback for the improvement of
the execution model, methods and tools (derived from
components C3.2, C.5).

We use a GQM model to define the rules and context
for interpretation of data and for feedback in order to re-
fine and improve execution models, methods and tools.
The degree to which interpretation can be supported de-
pends on our understanding of the software process and
product, and the degree to which we express this under-
standing as formal rules. Today, interpretation rules exist
only for some of the aspects of interest and are only valid
within a particular project environment or organization.
However, interpretation guided by GQM models will en-
able an evolutionary learning process resulting in better
rules for interpretation in the future. The interpretation
process can be much more effective provided historical
experience is available allowing for the generation of his-
torical baselines. In this case we can at least identify
whether observations made during the current project de-
viate from past experience or not.

(R5) A mechanism for learning in an organization (de-
rived from components C4, C5).

The learning process is supported by iterating the se-
quence of defining focused goals, refining them into hy-
potheses, and running experiments. Thesé ‘experiments
can range from completely controlled experiments to reg-
ular project executions. In each case we apply measure-
ment and analysis procedures to project classes of inter-
est. For each of those classes, a historical experience base
needs to be established concerning the effectiveness of the
candidate execution models, methods and tools. Feed-
back from ongoing projects of the same class, the corre-
sponding execution models, methods and tools can bé re-
fined and improved with réspect to context and precision/
detail s0 that we increase our potential to improve future
projects. T

The remaining seven (internal) requirements deal with
user interface management, report generation. experience
base, security and access control, configuration manage-
ment control, SEE interface and distribution issues. All
these issues-are important in order to suppon planning,
construction, leaming and feedback effectively.

Internal TAME requirements: —

(R6) A homogeneous user interface.

We distinguish between the physical and logical user
interface. The physical user interface provides a menu or
command driven interface between the user and the
TAME system. Graphics and window mechansims will be

3-28

5207

=

L

%
&l

=i
—

766 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL 14, NQ. 6. JUNE 1988

incorporated whenever useful and possible. The logical
user interface reflects the user’s view of measurement and
analysis. Users will not be allowed to directly access data
or run measurement tools. The only way of working with
the TAME system is via a GQM model. TAME will en-
force this top-down approach to measurement via its log-
ical user interface. The acceptance of this kind of user
interface will depend on the effectiveness and ease with
which it can be used. Homogeneity is important for both
the physical and logical user interface.

(R7) An effective mechanism for presenting data, in-
formation. and knowledge.

The presentation of analysis (measurement and inter-
pretation) results via terminal or printer/plotter needs to
be supported. Reports need to be generated for different
purposes. Project managers will be interested in periodi-
cal reports reflecting the current status of their project.
High level managers will be interested in reports indicat-
ing quality and productivity trends of the organization.
The specific interest of each person needs to be defined
by one or more GQM models upon which automatic re-
port generation can be based. A laser printer and multi-
color plotter would allow the appropriate documentation
of tables, histograms, and other kinds of textual and
graphical representations.

(R8) The effective storage and retrieval of all relevant

data, information, and knowledge in an experience base.

All data, information, and knowledge required to sup-
port tailorability and tractability need to be stored in an
experience base. Such an experience base needs to store
GQM models, engineering products and measurement
data. It needs to store data derived from the current proj-
ect as well as historical data from prior projects. The ef-
fectiveness of such an experience base will be improved
for the purpose of learning and feedback if, in addition to
measurement data, interpretations from various analysis
sessions are stored. In the future, the interpretation rules
themselves will become integral part of such an experi-
ence base. The experience base should be implemented as
an abstract data type, accessible through a set of functions
and hiding the actual implementation. This latter require-
ment is especially important due to the fact that current
database technology is not suited to properly suppon soft-
ware engineering concepts [26]. The implementation of
the experience base as an abstract data type allows us to
use currently available database technology and substitute
more appropriate technology later as it becomes avail-
able. The ideal database would be self-adapting 10 the
changing needs of a project environment or an organiza-
tion. This would require a specification language for soft-
ware processes and products, and the ability to generate
database schemata from specifications written in such a
language [46].

(R9) Mechanisms allowing for the implementation of
a variety of access control and security strategies.

TAME must control the access of users to the TAME
system itself, to various system functions and 1o the ex-
perience base. These are typical functions of a security
system. The enforced security strategies depend on the

5207

project organization. It is part of planning a project to
decide who needs to have access to what functions and
pieces of data. information, and knowledge. In addition
to these security functions, more sophisticated data access
control functions need to be performed. The data access
system is expected to “‘recommend’’ to a user who is de-
veloping a GQM model the kinds of data that might be
helpful in answering a particular question and suppon the
process of choosing among similar data based on avail-
ability or other criteria.

(R10) Mechanisms allowing for the implementation of
a variety of configuration management and control strat-
egies.

In the context of the TAME system we need to manage
and control three-dimensional configurations. There is
first the traditional product dimension making sure that
the various product and document versions are consistent.
In addition, each product version needs to be consistent
with its related measurement data and the GQM model
that guided those measurements. TAME must ensure that
a user always knows whether data in the experience base
is consistent with the current product version and was col-
lected and interpretated according to a particular model.
The actual configuration management and control strate-
gies will result from the project planning activity.

(RI1) An interface to a construction-oriented SEE.
An interface between the TAME system (which auto-
mates all process model components except for the con-
struction component C3.1 of the TAME process model)
and some external SEE (which automates the construction
component) is necessary for three reasons: a) 1o enable
the TAME system to collect data (e.g., the number of
activations of a compiler, the number of test runs) directly
from the actual construction process, b) to enable the
TAME system to feed analysis results back into the on-
going construction process, and c¢) to enable the construc-
tion-oriented SEE to store/retrieve products into/from the
experience base of the TAME system. Models for appro-
priate interaction between constructive and analytic pro-
cesses need to be specified. Interfacing with construction-
oriented SEE's poses the problem of efficiently intercon-
necting systems implemented in different languages and
running on different machines (probably with different op-
erating systems).

(R12) A structure suitable for distribution.

TAME will ultimately run on a distributed system con-
sisting of at least one mainframe computer and a number
of workstations. The mainframes are required to host the
experience base which can be assumed to be very large.
The rest of TAME might be replicated on a number of
workstations. | -

4

B. Architecture

Fig. 2 describes our current view of the TAME archi-
tecture in terms of individual architectural components and
their control flow interrelationships. The first prototype
described in Section IV concentrates on the shaded com-
ponents of Fig. 2.

We group the TAME components into five logical lev-

3-29

ORIGINAL PAGE IS -
OF POOR QUALITY

BASILI AND ROMBACH; THE TAME PROJECT 767 -—
PHYSICAL
USER
l Al: User lnterface Mansgement] INTERFACE i
......................... EEEEREEETTTTrro Y Feii
| A3 GQM Modei Salection > LoGicAL
7 Ywyvy y| (GOM-ORIENTED) ") _
4 USER - -
Ad: GGM Modal N
Generstion ™| ivrerFacE
¢ * > LEVEL
T e R R |
At GO ANALYSIS
Con- 1¢ war dback L 8 FEEDBACK
btrue- LEVEL e
Hon™ TR _T """""""" ¥y oo R R oo F=|
Iater- A6: Measurement ATt M MEASUREMENT -~
face [€71 Scheduling [Tools
vl LEVEL
Ad2 ! =
------------------------- ¥~~~~~»~~~ Rt -
A\ d
A#: Report © A9: Data _
Generation Entry & Val SUPPORT
hd 4 \ 4 J—
LEVEL ==
A10: TAME B v v - -
Experience Bass il
Fig. 2. "Fhe archilectural design of the TAME system. =
T i -
els, the physical user interface, logical user interface, the analysis results, and proper feedback. All these activ-
analysis and feedback, measurement and support level. ities are done in the context of a GQM model created by =
Each of these five levels consists of one or more architec- A3. The GQM Analysis and Feedback component needs -
tural components: to have access to the specific authorizations of the user in
¢ The Physical User Interface Level consists of one order to know which analysis functions this user can per- -
component: form. The GQM Analysis and Feedback component also =
(Al) The User Interface Management component provides analysis functions, for example, telling the user -
implements the physical user interface requirement R6. It whether certain metrics can be computed based upon the
provides a choice of menu or command driven access and data currently available in the experience base. This anal- -
supports a window-oriented screen layout. ysis feature of the subsystem is used for setting and op- —
* The Logical (GQM-Oriented) User Interface Level erationally defining goals, questions, and metrics, as well -

consists of two components:

(A2) The GQM Model Selection component imple-
ments the homogeneity requirement of the logical user in-
terface (R6). It guarantees that no access to the analysis
and feedback, measurement, or support level is possible
without stating the purpose for access in terms of a spe-
cific GQM model.)

(A3) The GQM Model Generation component imple-
ments requirement R! regarding the operational and
quantifiable definition of GQM models either from scratch
or by modifying existing models.

as actually performing analyses according to those previ-
ously established goals, questions, and metrics.

. The Measurement Level consxsts of three compo-__

nents =

(A4.2) This second portion of the Construction In-
terface component implements the measurement interface
between the TAME system and SEE's (part a) of require-
ment R11) and the SEE's access to the experience base of
the TAME system (part ¢) of requirement R11).

(A6) The Measurement Scheduling component im-
plements requirement R2 regarding the definition (and ex-

e The Analysis and Feedback Level consists of two ecution) of automated data collection strategies. Such -

components: strategies for when to collect data via the measurement
(A4.1) This first portion of the Construction Inter- tools may range from collecting data whenever they are _
face component implements the feedback interface be- needed for an analysis and feedback session (on-line) to —
tween the TAME system and construction-oriented SEEs collecting them periodically during low-load times and -

(part b) of requirement R11). storing them in the experience base (off-line).

(A35) The GQM Analysis and Feedback component (A7) The Measurement Tools component imple-
implements requirement R3 regarding execution and con- ments requirement R2 regarding automated data collec- =
trol of an analysis and feedback session, interpretation of tion. The component needs to be open-ended in order to -
=

3-30

5207

1

i

768 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 6. JUNE 1988

allow the inclusion ot new and different measurement tools
as needed.
* The Support Level consists of three components:

(A8) The Report Generation component implements
requirement R7 regarding the production of all kinds of
reports.

(A9) The Data Entry and Validation component im-
plements requirement R2 regarding the entering of man-
ually collected data and their validation. Validated data
are stored in the experience base component.

(A10) The Experience Base component implements
requirement R8 regarding the effective storage and re-
trieval of all relevant data, information and knowledge.
This includes all kinds of products, analytical data (e.g..
measurement data, interpretations), and analysis plans
(GQM models). This component provides the infrastruc-
ture for the operation of all other components of the
TAME process model and the necessary interactions
among them. The experience base will also provide mech-
anisms supporting the learning and feedback tasks. These
mechanisms include the proper packaging of experience
along the context and precision/detail dimensions.

In addition, there exist two orthogonal components
which for simplicity reasons are not reflected in Fig. 2:

(A11) The Data Access Control and Security com-
ponent(s) implement requirement R9. There may exist a
number of subcomponents distributed across the logical
architectural levels. They will validate user access to the
TAME system itself and to various functions at the user
interface level. They will also control access to the proj-

- ect experience through both the measurement tools and

the experience base.

(A12) The Configuration Management and Control
component implements requirement R10. This compo-
nent can be viewed as part of the interface to the experi-
ence base level. Data can only be entered into or retrieved
from the experience base under configuration manage-
ment control.

IV. First TAME PrOTOTYE

The first in a series of prototypes is currently being de-
veloped for supporting measurement in Ada projects [15].
This first prototype will implement only a subset of the
requirements stated in Section III-A because of a) yet un-
solved problems that require research, b) solutions that
require more formalization, and c) problems with inte-
grating the individual architectural components into a
consistent whole. Examples of unsolved problems requir-
ing futher research are the appropriate packaging of the
experience along the context and precision/detail dimen-
sion and expert system support for interpretation pur-
poses. Examples of solutions requiring more formaliza-
tion are the GQM templates and the designing of a
software engineering experience base. Examples of inte-
gration problems are the embedding of feedback loops into
the construction process, and the appropriate utilization
of data access control and configuration management con-

5207

trol mechanisms. At this time, the prototype exists in
pieces that have not been fully integrated together as well
as partially implemented pieces.

In this section, we discuss for each of the architectural
components of this TAME prototype as many of the fol-
lowing issues as are applicable: a) the particular approach
chosen for the first prototype, b) experience with this ap-
proach, <) the current and planned status of implementa-
tion (automation) of the initial approach in the first TAME
system prototype, and d) experiences with using the com-
ponent:

(Al) The User Interface Management component is
supposed to provide the physical user interface for ac-
cessing all TAME system functions, with the flexibility
of choosing between menu and command driven modes
and different window layouts. These issues are reasonably
well understood by the SEE community. The first TAME
prototype implementation will be menu-oriented and
based upon the ‘X" window mechanism. A primitive ver-
sion is currently running. This component is currently not
very high on our priority list. We expect to import a more
sophisticated user interface management component at
some later time or leave it completely to parties interested
in productizing our prototype system.

(A2) The GQM Model Selection component is sup-
posed to force the TAME user to parameterize each
TAME session by first stating the objective of the session
in the form of an already existing GQM model or request-
ing the creation of a new GQM model. The need for this
restriction has been derived from the experience that data
is frequently misused if it is accessible without a clear
goal. The first prototype implementation does not enforce
this requirement strictly. The current character of the first
prototype as a research vehicle demands more flexibility.
There is no question that this component needs to be im-
plemented before the prototype leaves the research envi-
ronment.

(A3) The GQM Model Generation component is sup-
posed to allow the creation of specific GQM models either
from scratch or by modifying existing ones. We have pro-
vided a set of templates and guidelines (Section II-B-2).
We have been quite successful in the use of the templates
and guidelines for defining goals, questions and metrics.
There are a large number of organizations and environ-
ments in which the model has been applied to specify what
data must be collected to evaluate various aspects of the
process and product, e.g., NASA/GSFC. Burroughs,
AT&T, IBM, Motorola. The application of the GQM par-
adigm at Hewlett Packard has shown that the templates
can be used successfully without our guidance. Several of
these experiences have bgen written up in the literature
[4), [16]. [17]. [39]. [48]. [56], [60], [61]. We have been
less successful in automating the process so that it ties
into the experience base. As long as we know the goals
and questions a priori, the appropriate data can be iso-
lated and collected based upon the GQM paradigm. The
first TAME prototype implementation is limited to sup-

BASIL] AND ROMBACH, THE TAME PROJECT

port the generation of new models and the modificaton of
existing models using an editor enforcing the templates
and guidelines. We need to further formalize the tem-
plates and guidelines and provide traceability between
goals and questions. Formalization of the templates and
providing traceability is our most important research is-
sue. In the long run we might consider using artificial in-
telligence planning techniques.

(A4.] and A4.2) The Construction Interface compo-
nent is supposed to support all interactions between a SEE
(which supports the construction component of the TAME
process model) and the TAME system. The model in Fig.
1 implies that interactions in both directions are required.
We have gained experience in manually measuring the
construction process by monitoring the execution of a va-
riety of techniques (e.g., code reading [57], testing [20],
and CLEANROOM development [61]) in various gnvi-
ronments including the SEL [4]. [48]. We have also
leamed how analysis results can be fed back into the on-
going construction process as well as into corporate ex-
perience [4], [48]. Architectural component A4.1 is not
part of this first TAME prototype. The first prototype im-
plementation of A4.2 is limited to allowing for the inte-
gration of (or access to) external product libraries. This
minimal interface is needed to have access to the objects
for measurement. No interface for the on-line measure-
ment of ongoing construction processes is provided yet.

(A5) The GQM Analysis and Feedback component is
supposed to perform analysis according to a sEc1ﬁc GQM
model. We have gained a lot of experience in evaluating
various kinds of experiments and case studies. We have
been successful in collecting the appropriate data by trac-
mg ‘GQM models top-down. We have been less successful
in providing formal interpretation rules allowing for the
bottom-up interpretation of the collected data. One auto-
mated approach to providing interpretation and feedback
is through expent systems. ARROWSMITH-P provides
interpretations of software project data to managers [44],
it has been tested in the SEL/NASA environment. The
first prototype TAME implementation triggers the collec-
tion of prescribed data (top-down) and presents it to the
user for interpretation. The user-provided interpretations
will be recorded (via a knowledge acquisition system) in
order to accumulate the necessary knowledge that might
lead us to identifying interpretation rules in the future.

(A6) The Measurement Scheduling component is sup-
posed to allow the TAME user to define a strategy for
actually collecting data by running the measurement tools.
Choosing the most appropriate of many possible strate-
gies (requirements Section II1-A) might depend on the re-
sponse times expected from the TAME system or the stor-
age capacity of the experience base. Our experience with
this issue is limited because most of our analyses were
human scheduled as needed [4], [48]. This component will
not be implemented as part of the first prototype. In this
prototype, the TAME user w1|l tngger the execution of

769

be viewed as a minimal 1mplemen(atlon supporting a hu-
man scheduling strategy).

(A7) The Measurement Tools component is supposed
to allow the collection of all kinds of relevant process and
product data. We have been successful in generating tools
to gather data automatically and have learmed from the
application of these tools in different environments.
Within NASA, for example, we have used a coverage tool
to analyze the impact of test plans on the consistency of
acceptance test coverage with operational use coverage
{53]. We have used a data bindings tool to analyze the
structural consistency of implemented systems to their de-
sign [41], and studied the relationship between faults and
hierarchical structure as measured by the data bindings
tool [60]. We have been able to characterize classes of
products based upon their syntactic structure {35]. We
have not, however, had much experience in automatically
collecting process data. The first prototype TAME imple-
mentation consists of measurement tools based on the
above three. The first tool captures all kinds of basic Ada
source code information such as lines of code and struc-
tural complexity metrics [35], the second tool computes
Ada data binding metrics, and the third tools captures dy-
namic information such as test coverage metrics [65]. One
lesson learned has been that the development of measure-
ment tools for Ada is very often much more than just a
reimplementation of similar tools for other languages.
This is due to the very different Ada language concepts.
Furthermore, we have recognized the imponance of hav-

ing an intermediate representation level allowing for a
language independent representation of software product
and process aspects. The advantage of such an approach
will be that this intermediate representation needs to be
generated only once per product or process. All the mea-
surement tools can run on this intermediate representa-
tion. This will not only make the actual measurement pro-
cess less time-consuming but provide a basis for reusing
the actual measurement tools to some extent across dif-
ferent language environments. Only the tool generating
the intermediate representation needs to be rebuilt for each
new implementation language or TAME host enviroment.

(A8) The Report Generator component is supposed to
allow the TAME user to produce a variety of reports. The
statistics and business communities have commonly ac-
cepted approaches for presenting data and interpretations
effectively (e.g., histograms). The first TAME prototype
implementation does not provide a separate experience
base reporting facility. Responsibility for reporting is at-
tached to each individual prototype component; e.g., the.
GQM Model Generation component provides reports re-
garding the models, each measurement tool reports on its
own measurement data.

(A9) The Data Entry and Validation component is sup-
posed to allow the TAME user to enter all kinds of man-
ually collected data and validate them. Because of the
changing needs for measurement, this component must al-
low for the definition of new (or modification of existing)

3-32

5207

Ay | 4 | I

]

i

wil

 HI

i}

|

I3

I

gl

.

770 : 1EEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. i4, NO. 6, JUNE 1988

data collection forms as well as related validation (integ-
rity) rules. If possible, the experience base should be ca-
pable of adapting to new needs based upon new form def-
initions. We have had lots of experience in designing
forms and validations rules, using them, and leamning
about the complicated issues of deriving validation rules
[4], [48]. The first prototype implementation will allow
the TAME user to input off-line collected measurement
data and validate them based upon a fixed and predefined
set of data collection forms [currently in use in NASA's
Software Engineering Laboratory (SEL)]. This compo-
nent is designed but not yet completely implemented. The
practical use of the TAME prototype requires that this

component provide the flexibility for defining and ac--

cepting new form layouts. One research issue is identi-
fying the easiest way to define data collection forms in
terms of a grammar that could be used to generate the
corresponding screen layout and experience base struc-
ture.

(A10) The Experience Base component allows for ef-
fective storage and retrieval of all relevant experience
ranging from products and process plans (e.g., analysis
plans in the form of GQM models) to measurement data
and interpretations. The experience base needs to mirror
the project environment. Here we are relying on the ex-
perience of several faculty members of the database group
at the University of Maryland. It has been recognized that
current database technology is not sufficient, for several
reasons, to truly mirror the needs of software engineering
projects [26]. The first prototype TAME implementation
is built on top of a relational database management sys-
tem. A first database schema [46] modeling products as
well as measurement data has been implemented. We are
currently adding GQM models to the schema. The expe-
riences with this first prototype show that the amount of
experience stored and its degree of formalism (mostly
data) is not yet sufficient. We need to better package that
data in order to create pieces of information or knowl-
edge. The GQM paradigm provides a specification of what
data needs to be packaged. However, without more for-
mal interpretation rules, the details of packaging cannot
be formalized. In the long run, we might include expert
system technology. We have also recognized the need for
a number of built-in GQM models that can either be reused
without modification or guide the TAME user during the
process of creating new GQM models.

(A11) The Data Access Control and Security compo-
nent is supposed to guarantee that only authorized users
can access the TAME system and that each user can only
access a predefined window of the experience base. The
first prototype implements this component only as far as
user access to the entire system is concemned.

(A12) The Configuration Management and Control
component is supposed to guarantee consistency between
the objects of measurement (products and processes), the
plans for measurement (GQM models), the data collected
from the objects according to these plans, and the at-

5207

tached interpretations. This component will not be imple-
mented in the first prototype.

The integration of all these architectural components is
incomplete. At this point in time we have integrated the
first versions of the experience base, three measurement
tools, a limited version of the GQM analysis and feedback
component, the GQM generation component, and the user
interface management component. Many of the UNIX®
tools (e.g., editors, print facilities) have been integrated
into the first prototype TAME system to compensate for
yet missing components. This subset of the first prototype
is running on a network of SUN-3"s under UNIX. It is
implemented in Ada and C.)

This first prototype enables the user to generate GQM
models using a structured editor. Existing models can be
selected by using a unique model name. Support for se-
lecting models based on goal definitions or for reusing
existing models for the purpose of generating new models
is offered, but the refinement of goals into questions and
metrics relies on human intervention. Analysis and feed-
back sessions can be run according to existing GQM
models. Only minimal support for interpretation is pro-
vided (e.g., histograms of data). Measurement data are
presented to the user according to the underlying model
for his/her interpretation. Results can be documented on
a line printer. The initial set of measurement tools allows
only the computation of a limited number of Ada-source-
code-oriented static and dynamic metrics. Similar tools
might be used in the case of Fortran source code [33].

V. SuMMARrY AND CONCLUSIONS

We have presented a set of software engineering and
measurement principles which we have learned during a
dozen years of analyzing software engineering processes
and products. These principles have led us to recognize
the need for software engineering process models that in-
tegrate sound planning and analysis into the construction
process.

In order to achieve this integration the software engi-
neering process needs to be tailorable and tractable. We
need the ability to tailor the execution process, methods
and tools to specific project needs in a way that permits
maximum reuse of prior experience. We need to control
the process and product because of the fiexibility required
in performing such a focused development. We also need
as much automated support as possible. Thus an inte-
grated software engineering environment needs to support
all of these issues.

In the TAME project we have developed an improve-
ment-oriented (integratﬁ) process model. It stresses a)
the characterization of the current status of a project en-
vironment, b) the planning for improvement integrated
into software projects, and c) the execution of the project
according to the prescribed project plans. Each of these

®UNIX is a registered trademark of AT&T Bell Laboratories.

BASILI AND ROMBACH. THE TAME PROJECT

tasks must be dealt with from a constructive and analytic
perspective.

To integrate the constructive and analytic aspects of

software development, we have used the GQM paradigm.

It provides a mechanism for formalizing the characteriza-
tion and planning tasks, contrelling and improving proj-
ects based on quantitative analysis, learming in a deeper
and more systematic way about the software process and
product, and feeding back the appropnale experxence to
current and future projects.

The effectiveness of the TAME process model depends
heavily on appropriate automated support by an ISEE. The
TAME system is an instantiation of the TAME process
model into an ISEE; it is aimed at supporting all aspects
of characterization, planning, analysis, leaning, and
feedback according to the TAME process model. In ad-
dition, it formalizes the feedback and leaming mecha-
nisms by supporting the synthesis of project experience,
the formalization of its representation, and its tailoring
towards specific project needs. It does this by supporting
goal development into measurement via templates and
guidelines, providing analysis of the development and
maintenance processes, and creating and using experience
bases (ranging from databases of historical data to knowl-
edge bases that incorporate experience from prior proj-
ects).

We discussed a limited prototype of the TAME system,
which has been developed as the first of a series of pro-
totypes that will be built using an iterative enhancement
model. The limitations of this prototype fall into two cat-
egories, limitations of the technology and the need to bet-
ter formalize the model so that it can be automated.

The short range (1-3 years) goal for the TAME system
is to build the analysis environment. The mid-range goal
(3-5 years) is to integrate the system into one or more
existing or future development or maintenance environ-
ments. The long range goal (5-8 years) is to tailor those
environments for specific organizations and projects. -

The TAME project is ambitious. It is assumed it will
evolve over time and that we will learn a great deal from
formalizing the various aspects of the TAME project as
well as integrating the various paradigms. Research is
needed in many areas before the idealized TAME system
can be built. Major areas of study include measurement,
databases, artificial intelligence, and systems. Specific
activities needed to support TAME include: more for-
malization of the GQM paradigm, the definition of better
models for various quality and productivity aspects,
mechanisms for better formalizing the reuse and tailoring
of project experience, the interpretation of metrics with
respect to goals, interconnection languages, language in-
dependent representation of software, access control in
general and security in particular, software engineering
database definition, configuration management and con-
trol, and distributed system architecture. We aic inter-
ested in the role of further researching the ideas and prin-
ciples of the TAME project. We will build a series of

77t

evolving prototypes of the system in order to learn and
test out ideas.

ACKNOWLEDGMENT

The authors thank all their students for many helpful
suggestions. We especially acknowledge the many con-
tributions to the TAME project and, thereby indirectly to
this paper, by J. Bailey, C. Brophy. M. Daskalantonakis,
A. Delis, D. Doubleday, F. Y. Farhat, R. Jeffery, E. E.
Katz, A. Kouchakdjian, L. Mar eed, Y. Rong, T.
Sunazuka, P. D. Stotts, B. Swain, A, J. Tumer. B. Ulery,
S. Wang, and L. Wu. We thank the guest editors and ex-
ternal reviewers for their constructive comments.

REFERENCES

[1] W. Agresti. “"SEL Ada experiment. Status and design experience,””
in Proc. Eleventh Annu. Software Engineering Workshop, NASA
Goddard Space Flight Center. Greenbelt, MD. Dec. 1986.-

[2] I. Bailey and V_R. Basili. A meta-model for software development
resource expenditures,'” in Proc. Fifth Int. Conf. Software Engineer-
ing, San Diego. CA. Mar. 1981, pp. 107-116.

V.R. Basili. *Quantitative evaluation of software engineering meth-
odology.’"in Proc. First Pan Pacific Computer Conf.. Melboumne,

“Australia, Sept. 1985 also available as Tech. Rep. TR-1519, Dep.
Comput. Sci., Univ. Maryland. College Park, July 1985,

[4] V. R. Basili, **Can we measure software technology: Lessons leamed
from 8 years of trying.”” in Proc. Tenth Annu. Software Engineering
Workshop. NASA Goddard Space Flight Center, Greenbelt, MD, Dec.
1985,

[5] —. *’Evaluating software characteristics: Assessement of software
measures in the Software Engineering Laboratory,”” in Proc. Sixth
Annu, Software Engineering Workshop, NASA Goddard Space Flight
Center, Greenbelt, MD, 1981.

[6] V. R. Basili and J. Beane. "*Can the Parr curve help with the man-
power distribution and resource estimation problems,’” J. Syst. Soft-
ware, vol. 2, no. |. pp. 59-69. 198I.

{7} V. R. Basili and K. Freburger, ""Programming measurement and es-
timation in the Software Engmeenng Laboramry T J. Syst. Software,
vol. 2, no. 1. pp. 47-57. 1G8I. L epa—

{8] V. R. Basiliand D. H. Hutchens ‘An empmcal study ofa syntactic
measure family,”” /EEE Trans. Software Eng. . vol. SE-9, no. I1. pp.
664-672, Nov. 1983.

{9] V. R. Bas:ll and E. E. Katz, "‘Measures of interest in an Ada devel-

opment,”” in Proc. JEEE Compui. Soc, Workshop Software Engi-
neering Technology Transfer, Miami, FL, Apr. 1983. pp. 22-29.

[10] V. R. Basili. E. E. Katz, N. M. Panlilio-Yap. C. Loggia Ramsey,
and S. Chang. ""Charactérization of an Ada software development,™
Computer. pp. 53-65. Sept. 1985.

{11] V. R. Basili and C. Loggia Ramsey, "*ARROWSMITH- P A proto-
ype expert system for software engineering management.”” in Proc.
IEEE Svmp. Expert Systems in Government, Oct. 23-25, 1985, pp.
252-264.

f12] V. R. Basili and N. M. Panlilio-Yap. '‘Finding relationships between
effort and other variables in the SEL."" in Proc. JEEE COMPSAC,
Oct. 1985. _ I

{13} V. R. Basili and B. Pemconc Sof:ware errrors and complexny An
empirical investigation.”” ACM, Commun., vol. 27, no. 1. pp. 45-
52, Jan. 1984,

[14] V. R. Basili and R. Reiter, Jr., **A controiled experimem quantita-
tively comparing software development approaches,”” JEEE Trans.
Software Eng. . vol. SE-7. no. 5. PP 3992320, May 1981.

[15] V. R. Basili and H. D. Rombach, *"TAME: Tailoring an Ada mea-
surement environment,”" in Proc. Joint Ada Conf . Arlington. VA,
Mar. 16-19, 1987. pp. 318-325.

[16] —, Tallonng the software process (o project goals and environ-
ments,"” in Proc. Ninth Int. Conf Software Engineering, Monerey,
CA. Mar. 30-Apr. 2, 1987, pp. 345-357.

[17) —. “TAME: Integrating measurement into software environ-
ments.”” Dep. Comput. Sci., Univ. Maryland, College Park, Tech.
Rep. TR-1764 (TAME-TR-1-{987), June {987.

3

3-34

5207

i

Al

&l

m . IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 13, NO. 6. JUNE 1988

{18] —. *‘Software reuse: A framework,” in Proc. Teath Minnowbrook
Workshop Sofrware Reuse, Blue Mountain Lake, NY, Aug. 1987,

[19} V. R. Basili and R. W. Selby, Jr.. **Dalta collection and analysis in
software research and management.”* in Proc. Amer. Statist. Ass. and
Biomeasure Soc. Joint Siatistical Meerings, Philadelphia, PA, Aug.
13-16, 1984.

[20] ——, “‘Comparing the effectiveness of software lesting stralegies.”™”
IEEE Trans. Software Eng., vol. SE-13, no. {2, pp. 1278-1296, Dec.
1987.

[21] —, **Calculation and use of an environment's characteristic soft-
ware metric set,”” in Proc. Eighth Int. Conf. Software Engineering,
London, Engiand. Aug. 1985.

[22] V. R. Basili. R. W. Selby. and D. H. Hutchens, **Experimentation
in software engineering,"’ [EEE Trans. Software Eng.. vol. SE-11.
no. 7. pp. 733-743, July 1986.

[23] V. R. Basili, R, W. Selby, and T.-Y. Phillips, **Metri¢c analysis and
data validation across Foriran projects,”” JEEE Trans. Software Eng. .
vol. SE-9. no. 6, pp. 652-663, Nov. {983,

[24] V. R. Basilt and A. J. Tumer, '‘lterative enhancement: A practical
technique for software development,’” JEEE Trans. Software Eng.,
vol. SE-1, no. 4. pp. 390-396, Dec. 1975.

[25] V. R. Basili and D. M. Weiss, *'A methodology for collecting valid
software engineering data,”’ JEEE Trans. Software Eng.. vol. SE-10,
no. 3. pp. 728-738, Nov. 1984,

[26} P. A. Bernsiein, “‘Database system support for software engineer-
ing,”" in Proc. Ninth Int. Conf. Sofiware Engineering, Monterey, CA,
Mar. 30-Apr. 2, 1987, pp. 166-178.

[27] D. Bjomer, *"On the use of formal methods in software develop-
ment,” in Proc. Ninth Int. Conf. Software Engineering. Monterey,
CA, Mar. 30-Apr. 2, 1987, pp. 17-29.

28] B. W. Boehm, *'Software engineering.'’ JEEE Trans. Comput. vol,
C-25,no. 12, pp. 1226-1241, Dec. 1076.

[29] —. JSoftware Enginecring Economics. Englewood Cliffs, NIJ:
Prentice-Hall, 1981,
[30] —, **A spiral mode] of software development and enhancement,”™

ACM Software Eng. Notes, vol. 11, no. 4, pp. 22-42, Aug. 1986.

" [31] B. W. Boehm, J. R. Brown, and M. Lipow, '*Quantitative evaluation

of software quality.'” in Proc. Second Int. Conf. Software Engineer-
ing, 1976, pp. 592-605.

[32] C. Brophy, W. Agresti, and V. R. Basili, '‘Lessons leamned in use of
Ada oriented design methods.™" in Proc. Joint Ada Conf., Arlington,
VA, Mar. 16-19, 1987, pp. 231-236.

{33] W.J. Deckerand W. A. Taylor, '*Fornran static source code analyzer
program (SAP),”” NASA Goddard Space Flight Center. Greenbelt,
MD, Tech. Rep. SEL-82-002, Aug. 1982.

[34} C. W. Doerflinger and V. R. Basili, *‘Monitoring software develop-
ment through dynamic variables,'” JEEE Trans. Software Eng.. vol.
SE-11.no. 9, pp. 978-985, Sept. 1985.

{35} D. L. Doubleday, "*ASAP: An Ada static source code analyzer pro-
gram,”" Dep. Comput. Sci.. Univ. Maryland, Coilege Park, Tech.
Rep. TR-1895, Aug. 1987.

[36] M. Dowson, “"ISTAR—An integrated project support environment,™
in ACM Sigplan Notices (Proc. Second ACM Sofiware Eng. Svmp.
Practical Development Support Environmenis), vol. 2, no. 1, Jan.
1987.

[37) M. Dyer, *Cleanroom software development method,”” IBM Federal
Systems Division, Bethesda, MD, Oct. 14, 1982,

[38] J. Gannon, E. E. Katz, and V. R. Basili. ‘‘Measures for Ada pack-
ages: An initial study,”” Commun. ACM, vol. 29, no. 7. pp. 616~
623, July 1986.

[39] R. B. Grady, '‘Measuring and managing software maintenance,”
IEEE Software, vol. 4. no. 5, pp. 35-45, Sept. 1987.

[40] M. H. Halstead. Elemenrs of Software Science. New York: Elsevier
Nornh-Holland, 1977.

[41] D. H. Hutchens and V. R, Basili, "*System structure analysis: Clus-
tering with data bindings."* /EEE Trans. Software Eng., vol. SE-11,
pp. 749-757, Aug. 1985.

J[42] E. E. Katz and V. R. Basili, **Examining the modularity of Ada pro-
grams."” in Proc. Joint Ada Conf., Atlington, VA, Mar. 16-19, 1987,
pPp. 390-396.

[43] E. E. Katz, H. D. Rombach, and V. R. Basili, **Structure and main-
tainability of Ada programs: Can we measure the differences?”” in
Proc. Ninth Minnowbrook Workshop Software Performance Evalua-
tion, Blue Mountain Lake, NY. Aug. 5-8, 1986.

[44] C. Loggia Ramsey and V. R. Basili, **An evaluation of expen sys-
tems for software engineering management,’" Dep. Comput. Sci..
Univ. Maryland, College Park, Tech. Rep. TR-1708, Sept. 1986.

5207

[45] M. Marcus, K. Satiley, S. C. Schaffner. and E. Albent. "DAPSE: A
distributed Ada programming support environment,”” in Proc. JEEE
Second Ini. Conf. Adu Applications and Environmenis, 1986. pp. 115-
125.

{46] L. Mark and H. D. Rombach, ** A meta information base for software
engineering,”’ Dep. Compui. Sci.. Univ. Maryland. College Park.
Tech. Rep. TR-1765, July 1987,

[47] T.J. McCabe, “*A complexity measure.”* JEEE Trans. Softwure Eng. .
vol. SE-2, no. 4, pp. 308-320, Dec. 1976.

[48] F. E. McGarry. '‘Recent SEL studies.”” in Proc. Tenth Annu. Sofi-
ware Engineering Workshop. NASA Goddard Space Flight Center,
Greenbelt, MD. Dec. 1985.

[49] L. Osterweil, *"Software processes are software too.”" in Proc. Niath
Int. Conf. Saftware Engineering. Monterey. CA, Mar. 30-Apr. 2,
1987, pp. 2-13.

[50] F. N. Parr, "' An alternative to the Rayleigh curve model for software
development effort,”” [EEE Trans. Software Eng.. vol. 5E-6. no. §.
pp. 291-296, May 1980.

[51] L. Putnam, **A general empirical solution to the macro software siz-
ing and estimating problem."* IEEE Trans. Sofrware Eng.. vol. SE-
4, no. 4. pp. 345-361, Apr. 1978.

[52] C. V. Ramamoorthy, Y. Usuda, W.-T. Tsai. and A. Prakash. ""GEN-
ESIS: An integrated environment for supponting development and ev-
olution of software,” in Proc. COMPSAC. 1985.

{53} J. Ramsey and V. R. Basili, **Analyzing the test process using struc-
tural coverage.”" in Proc. Eighth Ini. Conf. Software Enginecring.
London, England, Aug. 1985, pp. 306-311

{54] H. D. Rombach, "*Software design metrics for maintenance.”" in Proc.
Ninth Annu. Software Engineering Workshop. NASA Goddard Space
Flight Center, Greenbelt, MD, Nov. 1984,

[551 —. **A controlled experiment on the impact of software structure
on maintainability,”” JEEE Trans. Software Eng.. vol. SE-13, no. 3,
pp- 344-354, Mar. 1087. -

{56] H. D. Rombach and V. R. Basili. '*A quantitative assessment of soft-
ware maintenance: An industrial case study.'” in Proc. Conf. Soft-
ware Mainrenance. Austin, TX. Sept. 1987, pp. 134-144,

{57) H. D. Rombach, V. R. Basili, and R. W. Selby, Jr., "*The role of
code reading in the software life cycle."” in Proc, Ninth Minnowbrook
Workshop Software Performance Evaluation, Blue Mountain Lake,
NY. August 5-8. 1986.

[58) W. W. Royce. '*Managing the development of large software sys-
tems: Concepts and techniques.”” in Proc. WESCON. Aug. 1970.

[59] R. W. Selby. Jr.. ""Incorporaling metrics into a sofiware environ-
ment,” in Proc. Joini Ada Conf., Arlington, VA, Mar. 16-19, 1987,
pp. 326-333.

[60] R. W. Selby and V. R. Basili, **Analyzing error-prone system cou-
pling and cohesion.”* Dep. Comput. Sci.. Univ. Maryland. College
Park, Tech. Rep.. in preparation.

[61] R. W. Selby, Jr.. V. R. Basili, and T. Baker. "CLEANROOM soft-
ware development: An empirical evaluation, ™ JEEE Trans. Sofiware
Eng.. vol. SE-13. no. 9, pp. 1027-1037. Sept. 1987.

{62] C. E. Walston and C. P. Felix. **A method of programming mea-
surement and estimation,”” /BM Sysi. J., vol. 16, no. 1. pp. 54-73,

1977.

[63] A. 1. Wasserman and P. A. Pircher, '"Visible connections.”” UNIX
Rev.. Oct. 1986.

[64] Webster's New Collegiute Dicrionary. Springfield. MA: Merriam,
1981.

{651 L. Wu, V. R. Basili, and K. Reed. '*A structure coverage tool for
Ada software systems."" in Proc. Joint Ada Conf.. Arlingion, VA,
Mar. 16-19. 1987, pp. 294-303.

[66] M. Zelkowitz, R. Yeh, R. Hamlet, }J. Gannon, and V. R. Basili,
"Software engineering practices in the U.S. and Japan.™ Computer.
pp. 57-66. June 1984.

Victor R. Basili (M'83-SM"84) is Professor and
Chairmith of the Department of Computer Science
at the University of Maryland. College Park. He
was involved in the design and development of
several sofiware projects, including the SIMPL
family of programming languages. He is currently
measuring and evaiuating software developmen
in industrial and government settings and has con-
sulted with many agencies and organizations.-in-
cluding IBM. GE. CSC, GTE, MCC. AT&T.
Motorola, HP. NRL. NSWC. and NASA. He is

ORIGINAL PAGE 13
OF POOR QUALITY

BASILI AND ROMBACH. THE TAME PROJECT

ane of the founders and principals in the Software Engineering Laboratory,
a joint venture between NASA Goddard Space Flight Center, the Univer-
sity of Maryland and Computer Sciences Corporation, established in 1976.
He has been working on the development of quantitative approaches for
software management, engineering, and quality assurance by deveioping
models and metrics for the software development process and product. He
has authored over 90 papers. In 1982, he received the Quistanding Paper
Award from the IEEE TRANSACTISNS ON SOFTWARE ENGINEERING for his
paper on the evaluation of methodologies.

Dr. Basili is currently the Editor-in-Chief of the ITEEE TRANSACTIONS
ON SOFTWARE ENGINEERING and was Program Chairman for several confer-
ences including the 6th International Conference on Software Engineering.
Hc has served on the Editorial Board of the Journal of Systems and Soft-
ware. He is a member of the Board of Governors of the IEEE Computer
Society.

ORIGINAL PAGE IS
OF POOR QUALITY

° 77

H. Dieter Rombach received the B.S. degree
(Vordiplom) in mathematics and the M.S. degrez
(Diplom) in math ics and computer science
from the University of Karisruhe, West Germany,
and the Ph.D. degree (Dr. rer. nat.) in computer
science from the University of Kaiserslautern,
West Germany. .

He is an Assistant Professor of Computer Sci-
ence at the University of Maryland. College Park.
He is also affiliated with the University of Mary-
land Institute for Advanced Computer Studies
(UMIACS) and the Software Engineering Laboratory (SEL), a joiat ven-
ture between NASA Goddard Space Flight Center, the University of Mary-
Tand, and Computér Sciénces Corporation. His research interests include
software methodologies, measurement of the software process and its prod-
ucts, software engincering environments, and distributed systems.

Dr. Rombach served as Guest Editor for the /EEE Software magazine
Special Issue on Software Quality Assurance (September [987). He is a
member of the IEEE Computer Society, the Association for Computing
Machinery, and the German Computer Society (GI).

VALIDATING THE TAME RESOURCE DATA MODEL*

D. Ross Jeffery (1) & Victor R. Basili (2)

(1) University of New South Wales, Australia
(2) University of Maryland, College Park, MD 20742

Abstract

This paper presents a conceptual model of
software development resource data and validates
the model by reference to the published literature
on necessary resource data for development sup-
port environments. The conceptual model
presented here was developed using a top-down
strategy. A resource data model is a prerequisite
to the development of integrated project support
environments which aim to assist in the processes
of resource estimation, evaluation and control.
The model proposed is a four dimensional view of
resources which can be used for resource estima-
tion, utilization, and review. The model is vali-
dated by reference to three publications on
resource databases, and the implications of the
model arising out of these comparisons Is dis-
cussed.

Keywords : software process, methods, tools,
conceptual model, resources, estimation, environ-
ments, software engineering database, validation

INTRODUCTION

To date, the approach taken to the accumulation
of knowledge concerning the software process has
been largely bottom-up. Studies have been carried
out to determine the existence and nature of pro-
ject relationships. These studies, such as [Wolver-
ton 74], [Nelson 67|, [Chrysler 78|, [Sackman et.al.
68}, {Basili, Panlilio-Yap 85&, asili, Freburger
81], [Basili, Selby, Phillips 83], [Walston, Felix
77]), [Jeffery 87a,87b], and [Jeflery, Lawrence
1979, 1985] have explored the relationships
between project variables, searching for an under-
standing of the software process and product. For
example, relationships between effort and size,
errors and methods, and test strategy and bug
identification, have been found.

*This research was funded in part by NASA Grant

NSG-5123 to University of Maryland

187

This paper has two major aims:

l% To briefly present a top-down characterization
(TDC) structure of software project resource data,
which aims to facilitate :

1. Further accumulation of knowledge of pro-
ject resource characteristics and metrics within
a theoretical structure.

2. The storage of project resource data in a

generalized structured way so that estimation,

evaluation, and control can be facilitated using

1a)n organized quantitative and qualitative data
ase.

2) To validate this structure against published
resource data models.

The characterization structure of resource data is
a prerequisite to the development of an Integrated
Project Support Environment (IPSE) in which it
is possible to:

1. Objectively choose appropriate software
processes,

2. Estimate the process characteristics such a8
time, cost, and quality

3. Evaluate the extent to which the resource
aims are being met during development, and

4. Improve the software process and product.

The structure presented and validated here is a
part of the TAME (Tailoring A Measurement
Environment) project which seeks to develop an
integrated software project measurement,
analysis, and evaluation environment. This
environment is based in part on the evolutionary
improvement paradigm [discussed in Basili, Rom-
bach 87]. It is also based on the ”Geal-Question-
Metric” paradigm outlined in [Basili 85| and
[Basili, Weiss 84?.

The aims of this paper are firstly to present the

TDC structure or model for the perception of
software development resources which will assist
in the process of taking those aims of, say, a
development manager and translating them into a
set of questions and metrics which can be used to
measure the software process. It is meant to be
independent of the particular process model used

0270-5257/88/0000/0187301.00 © 1988 IEEE

5207

Recommended by: B. Boehm and J. Musa

for development and maintenance. A full descrip-
tion of the model, including its dynamic nature is
described in [Jeflery, Basili 87a and 87b]. The
paper secondly aims to validate the model by a
comparison of the model with the resource data
models presented in the literature.

2. THE PROJECT ENVIRONMENT
CHARACTERISTICS

Resources are consumed during the software pro-
cess in order to deliver a software product. The
software process has overall characteristics which
are super-ordinate to the resources consumed.
Therefore, before resource data can be character-
ized it is necessary that a process characterization
profile be established, This characterization
includes data on factors such as:

project type

organizational development conventions
project manager preferences

target computer system

development computer system

project schedules or milestones

project deliverables

In this data the broad project and its environment
characteristics are established. For example, is the
process using evolutionary development or a

waterfall method? Is the project to be developed
by in-house stafl or external contractors? What
organizational constraints are being imposed on
the project development time? What management
constraints are being imposed, say on staffing lev-
els? .

These factors form the environment in which the
software process must occur, and will therefore
determine, in many ways, the nature of that
software process. A simple example of this is the
question of the process model - evolutionary or
waterfall. This constraint establishes milestones
and the pattern of resource use, and therefore
partially determines the interpretation of the
resource data collected.

3. THE RESOURCE CLASSIFICATION

At the level below the characterization of the pro-
ject and its environment we are interested in clas-
sifying the resources consumed in the generation
of the software product. In this section of the
paper we present a structure for that
classification. This structure covers onmly the
resource aspect of the project and is therefore
only concerned with the software process and the
resources consumed or used in the process, The
model is not concerned with the software product.
As stated above, the resource model was first
developed and presented in [Jeffery, Basili 87]

5207

The model structure consists of a four dimen-
sional view. This four dimensional view is divided
into two segments:

1. resource type, and
2. resource use

In a software process the two segments being
separated are (lg)the nature and characteristics of
the resource, and (2) the manner in which we look
at or consider the consumption of that resource.

3.1 Resource Type

In the first segment we are concerned with classi-
fying the nature of the resource; is it someone’s
time, or a physical object such as a computer, or
a logical object such as a piece of software? We
are also interested in describing the properties of
those resources such as description, model
number, and cost per unit of consumption.

By decomposing the resources into different types
different views of the resources can be provided.
For example, it may be important for operations
personnel to know a breakdown of the hardware
resources used on a project according to the
different physical machines being used, whereas
from a project manager’s perspective at a point in
time, the specific machine may not be of interest,
but the availability of a certain class of machine
may be critical. Resource managers will be
interested in the types of resources available (for
example, people} and the characteristics of those
resources for project planning purposes. Thus the
categorization provided here is the basis of the
resource management environment, in that it is in
this segment of the model that the resources are
listed and described.

The resources of a software project can be
classified as:

- hardware

- software

- human

- support {supplies, materials,
communications facility costs, etc.)

These categories are meant to be mutually
exclusive and exhaustive and therefore are able to
contain each instance of resource data in one or
other of the categories.

Hardware resources encompass all equip-
ment used or potentially able to be used in the
environment under consideration. (For example,
target and development machines, terminals,
workstations).

“Software resources- encompass all previ-
ously existing programs® and software systems
used or potentially able to be used in the environ-
ment under consideration. (For example, com-
pilers, operating systems, utility routines, previ-
ously existing application software).

|

1 i

€l

dl

I

i

L

FH

Human resources encompass all the people
used or potentially able to be wused for
development, operations, and maintenance in the
environment under consideration whether internal
or external (subcontractors, consultants, etc)

Support resources encompass all of the
additional facilities such as materials, communica-
tions, and supplies which are used or potentially
able to be used in the environment under con-
sideration.

The values associated with these resources may be
stored in both price and volume measures, where
volume means, for example, hours of use or avai-
lability, or the number of times a resource is
needed, and price refers to the $ values associated
with that resource. This may be a cost per unit
measure or & cost per period of time.

This four-way classification provides an initial
resource-type decomposition. The aim in this
decomposition is to separate the major resource
elements that are used in the software process in
order to provide manageability. This initial
separation is necessary because of the very
different hature of each of these resource types
and the consequent difference in attributes and
management techniques which are necessary in
the estimation, evaluation, and control of each of
these resource categories.

Further decomposition within this segment may
be desirable and will be dependent on the goals of
the responsible persons. The number of different
possibilities increase as the decomposition contin-
ues within each of the major resource categories.
For example, the exact nature of the resource
decomposition within the hardware category will
vary sigoificantly from one organization to
another because of the different hardware utilized
and the organizational structure surrounding that
hardware utilization. For example, it may be
desirable to decompose hardware into target and
development hardware if there is a difference, and
software into operating systems and
languages/editors in order to model say the avai-
lability of cross-compilers.

3.2 Resource Use

Over the type segment we need to impose the
second segment; the "use” structure. The categor-
ization within this dimension allows the resources
consumption to be associated with different per-
spectives of the software process. For example, it
is through this use structure that we are able to
distinguish, for example,

between prior-project expectations of consump-
tion and resources actually consumed, or

between resources consumed in each phase of
the project, or

between the utilization of a resource and the
availability of that resource, or

5207

189

between an ideal view of resource planning and
the resources actually available.

The use structure consists of :

1. INCURRENCE

1.1 Estimated
1.2 Actual

2. AVAILABILITY

2.1 Desirable
2.2 Accessible
2.3 Utilized

3. USE DESCRIPTORS

3.1 Work type
3.2 Point in Time
3.3 Resources Utilized

3.2.1 Incurrence

This category allows the resource information to
be gathered and used in a manner suitable to the

" management of the resource. It is necessary, for

example, to store data on estimated resource
usage, resource requirements, and resource availa-
bility.

This data is necessarily kept separate from the
actual resource incurrence or use, which is stored
via the actual category.

These two categories then permit process tracking

via comparisons between them and extrapolation
from the actual data. At the project summary
points, explanations and defined data accumula-
tions on estimated and actual resource use provide
feedback on the process. This feedback should
contain reasons for variance between the
estimated and actual so that a facility for cor-
porate memory can be established and the neces-
sary data stored to facilitate and explain any
updates of the current resource values. It needs to
be noted that the model proposed allows for
different estimates and actuals at different points
in time.

The two classifications are the basis for the struc-
ture proposed because they constitute significantly
different viewpoints on the process, and again pro-
vide mutually exclusive categorization which will
facilitate management estimation, evaluation, and
control.

This structure requires that process data, as it
changes in value during the project, will not be
jost but will be stored ip-an accessible manner so
that meaningful analysisbf projects can be carried
out using a database that provides complete
details of the project history.

3-39

This philosophy specifically addresses the need for
a corporate memory concerning past projects. By
implementing such a structured project log the
basic data for such a memory is available in
numeric and text format.

3.2.2 Availability

This category allows storage of a resource use by :

- desirable
- accessible
- utilized

This categorization provides further refinement of
the resource data. Through this, and say the
ineurrence category, it is possible to compare the
actual rescurces utilized with the estimated utifi-
zation, and then trace possible reasoms for vari-
ance through the desirable and accessible dimen-
sions. That is, differences between planned availa-
bility and actual availability of a resource will be
significant in understanding the software resource
utilization that occurred during the process.

Desirable is defined as all the resources
that are reasonably expected to be of value on the

project.

Accessible is 3 subset of desirable (when
considering the project resources only) and is used
to define the resources which are able to be used
on the project.

The difference between desirable and accessible is
those resources seen as desirable for the project
but which were not available for use during the
project. This difference may occur, for example,
because of budget constraints or inability to
recruit stafl. The desirable resource list permits an
"ideal” planning view. When compared with
accessible it allows management to see the
compromises that were made in establishing the
project, thus facilitating a very explicit basis for
risk management within the resource database.
The database is thereby able to hold views of not
only the resources actually applied to the project
but also those resources which were considered to
be desirable along with the reasons for their use
or non-use. In this way the resource trade-offs are
made explicit.

Utilized is a subset of accessible and is
defined as the resources which are used in a pro-
ject,
The difference between accessible and utilized
represents those resources available for the project
but not used. This difference will arise because of
three possible reasons:

1. The resources prove to be inappropriate for
the project under consideration, or

9. The resources are appropriate but they are
excess to those needed

5207

3. The resources are appropriate, and their use
is contingent on an uncertain future event.

The use of these storage categories is somewhat
complex and is explained in detail further below
in section 3.4.2.

Through this availability category we are able to
distinguish between:

{1) the resources which are reasonably expected
to be beneficial to the process (desirable),

(2) the resources which exist in the organization
and are able t6 be used if needed (accessible),
and

3) the resources which are used in a project |

utilized)

Through this categorization it is then possible to
track resource usage and to pinpoint their use or
non-use and to ascribe reasons particularly to
their pon-use as in the case of non-accessibility.
As in the INCURRENCE category, the reasons
for divergence between desirable, accessible, and
utilized are stored in a feedback facility.

3.2.3 Use Descriptors

This category provides a description of the con-
sumption of the resource item in terms of three
essential characteristics of the consumption that
item:

1. The Nature of the Work being done by
the resource: (e.g. coding, inspecting, or
designing) This category can be used in con-
junction with other views to distinguish
between process activities, such as human
resources estimated to be desirable in design
work, or machine resources actually utilized
in testing , or elapsed time implications of
inspections.

2. Point in Calendar Time : This category
pinpoints the resource item by calendar
time. In this way resource items (estimated
or actual; desirable, accessible, or utilized)
are associated with a specific point in time
or period of time. This facilitates tracing of
time dependent relationships and the com-
parison of resource values over time.

3. Resources Ulilized . This category meas-
ures the extent of resource consumption in
terms of hours, dollars, units, or whatever is
the appropriate measure of use.

The Use Descriptors also pm\}ide the link to the

work breakdown structure which is commonly
embodied in process models. This link is este-
blished through the association of a particular
piece of work being dans at a point in time with
the work package desctibed in the work break-
down structure. This point is discussed further
below in Section 8, Validating the Model.

|

g a n U {

I

ORIGINAL PAGE
E IS
OF POOR QUALITY

3.3 COMBINING THE VIEWS

The structure suggested here can be viewed as a
hierarchy for the purpose of explanation. Such 2
hierarchy is shown in Figure 1.

{Descriptlion, milestones, Larget NI Jwari
gevelopment hardware, Jeltveraoies, et¢ H

consi$is of

D

(Hargware, SoTtware, human,
support pius altribules of the

Tret resource)

(wotrk asture, Calendar time

USE DESCRIPTORS ressure af work)

AVAILABILITY

FIGURE {. THE STRUCTURE OF THE TDCiMODEL

In this figure we see that the proposed structure
views the software project (which has attributes
describing that project) consuming resources. The
resources are characterized as having four dimen-
sions of interest (type, use, incurrence, and availa-
bility). At the resource type level we describe each
resource as being one of hardware, software,
human, or support, and having various attributes.
The attributes for each of these four types will be
different in nature. For example, the human attri-
butes might include name, address, organizational
unit, skills, pay rate, umnit cost, age, and so forth.
The attributes for hardware will be quite
different, describing manufacturer, purchase date,
memory capacity, network connections, or similar
types of characteristics.

At the next level in the diagram we model the use

of the resource. In the first instance this involves
the type of work that the resource is performing,
the point (or span) in calendar time at which the
work is being donme, and the measure of the
amount of work done. This last measure (amount
of work) might be expressed in person-time,
execution-time, connect-time, or whatever is the
relevant measure of work for the resource
instance.

The use of the resource is then described as being
either estimated or actual, and both of these may
be desirable, accessible, or utilized. In this way
the following concepts are supported :

5207

1. Estimated Desirable : The resources con-

sidered “ideal” at various stages :
ProCESS. ges of the planning

9. Estimated Accessible The resources
which are expected to be available for use in the
process, given the constraints imposed on the
software process (a contingency plan).

3. Estimated Utilized : The resources which
it is anticipated will be used in the software pro-
cess.

4. Actual Desirable : With hindsight, the
resources which proved to be the "ideal” consider-
ing the events that occurred in the software pro-
cess. A part of the learning process.

5. Actual Accessible : Again with hindsight,
the resources which weye actually available and
could have been utilized. A part of the learning
process.

6. Actual Utilized : The resources actually
used in the software process.

Categories one through three are used initially for
planning purposes. The numeric and text values
associated with each of thése three categories may
be derived {rom:

a. individual or group knowledge

b. a knowledge base

c. a database of prior projects, and/or
d. algorithmic models

At the very simplest level, the planning process
might establish only numeric values in the
estimated utilized category based on individual
knowledge alone. In essence, this is the only form
of estimation used in many organizations, wherein
project schedules and budgets are established by
an individual, based on that individuals experi-
ence. These estimates represant the expected pro-
ject and resource characteristics for the duration
of the project.

The extensions suggested here allow these esti-
mates to be enlarged in the following dimensions :

The nature of the estimate
The source of the estimates
The timing of the estimates

1. The nature of the estimate. The model
allows project and resource managers to distin-
guish between desirable, accessible, and utilized
estimates as discussed above. The estimated desir-
able dimension would be used at a fairly high
level in the project planning process to outline the
hardware, software, people, and support resources
that are considered to be desirable for the project.
This may list specific gieces of hardware and
software which are desirable at certain points in
time. It might also be used to list characteristics
of the people (such as skills) that would be ideal
on the project. The saccessible dimension would

then reflect the expected resources that will actu-
ally be available to be used. Again this could be
at a fairly high level, indicating the resources
available, the differences between these and those
desirable, and the reasons why the two categories
do not agree; reflecting cost constraints, or risk
attitudes which have been adopted as part of the
project management profile. The utilized category
would normally extend to a lower level in terms of
the project plan, detailing estimated resources
perhaps down to the work package level and short
periods of time.

2. The source of the estimates. It was sug-
gested above that there are four major possible
sources for these estimates; individuals or groups
of people, a knowledge base, a database of prior

rojects, and algorithmic models of the process,

}%ach of these should be supported in a measure-
ment environment, and each has significant impli-
cations with respect to the design of such an
environment. The current state of the art appears
well equipped to support algorithmic models of
some parts of the estimation process (for example,
estimates of project effort based on one of the
many available estimation packages such as
COCOMO [Boehm 81}, SLIM [Putnam 81], SPQR
[Jones 86]). Similarly the tools available in the
database environment allow the storage and
retrieval of numeric data on past projects. How-
ever the storage and searching of large volumes of
text data on prior projects, the use of a
knowledge base, and the support of group decision
support processes are all the subject of current
research (see for example, ,IBernstein 87],
[Nunamaker, et.al. 88], [Barstow 87|, [Valett 87}).

The timing of the estimates. In the strue-
ture suggested, all estimates may be made before
the commencement of the software process and
also at any point in time during the process. How-
ever there are certain points in time during the
process at which estimates are more likely to be
updated. These are:

1. at project milestones -

2. at manager initiated points in time at
which major divergence between estimate
and actual is recognized by the manager

3. at system Iinitiated points in time at
which the measurement system recognizes a
potentially significant divergence between
estimate and actual

The third possibility implies that the measure-
ment system is able to intelligently recognize the
-existence of a problem with respect to the com-
parison of actual and estimate. This facility is
suggested as needed because one of the major
management stumbling blocks is generally not
concerned with taking action once a problem is
identified, but the identification of the problem in
the first place. This identification problem occurs
because of the volume of data that needs to be

rocessed in order to recognize a potential prob-
em state. It is the measurement environment

5207

which is expert at processing the data volume. It
is t_he manager who is expert at taking corrective
action once the problem is highlighted.

Categories four (actual desirable) and five (actual
accessible) of the structure exist to provide a feed-
back and learning dimension to the project data-
base. These values would be determined after the
project is complete. And in the comparison of the
estimates made at various stages of the process
and these two categories, a process is facilitated in
which the organization can learn based on the
variance of expectations and actual which have
occurred in the past projects. As with the esti-
mates, the categories of desirable and accessible
are used in order to allow the comparison of
"actual ideal” with "actual available” so that an
ex-post ‘view of the management of the process
can be captured. The question being asked here is;
"How could we have handled resources better?” It
is a learning mechanism to generate explicit new
knowledge for the knowledge and data bases, and
also to improve individual and group knowledge.

Category six {actual utilized) will be the most
active category within the structure, carrying all
of the values associated with the resources of the
project. These values will be updated on a regular
basis throughout the software process, and will be
the source of the triggering process mentioned in
the discussion of updates to the estimates.

The data collected during the project should be
able to:

1. increase individual and group knowledge

2. improve the knowledge base

3. add to the prior project database, and/or

4. support the algorithm determination
process in the individual organization.

In summary, the model proposed is a four dimen-
sional view of resource data. The four views in the
data model are: -

1. RESOURCE TYPE: which is a mutually

exclusive and exhaustive categorizatien

which captures the nature of the resource.

2. INCURRENCE: which is also mutually

exclusive and exhaustive describing actual or
. estimated resources. It carries an additional

feedback element to contain the corporate
memory explaining the difference between
the category values and differences over

time.

3. AVAILABILITY: in which each category
is a subset of the the higher category, allow-
ing desirable, accessible, and utilized
resources. Again feedback is used to explain
the differences between categories and over
time. .-r

al |

I

I

1
i

i

Y

|

ORIGINAL PAGE Is
OF POOR QuALITY

4. USE DESCRIPTORS: which categorizes
specific elements in the nature of the
resource use. These .are the nature of the
work done by the resource, the point in time
of the work, and the amount of that work.

3.4 USING THE TDC STRUCTURE
3.4.1 At the project level

Discussion so far has applied the proposed 4D
structure to mesource classification. It is appropri-
ate to also consider using this structure, or a part
of it, for the Project Environment Characteristics
outlined in section 2 above. In this way the con-
straints acting on the software process can be
identified as applying:

to a particular type of resource,
either estimated or actual

with a stated availability

at a point in time,

concerning a particular type of work

An overall model of the software project is shown
in Figure 2. In this figure the meta-entity project
is decomposed into a number of tasks or con-
tracts, each task consuming the meta-entity
resource and producing the meta-entity product.
In the implementation of this model the meta-
entities will require many entities to characterize
them.

consists of

/

cansumes Aoaxes

FIGURE 2. AN OVERVIEW OF THE SOFTWARE PROJECT

Thus the project has characteristics, as do the
tasks and subtasks, the resources, and the pro-
ducts. Characteristics at all of these levels need
to be stored.

Through the storage of the project characteristics,
the constraints acting on the product or process
determined at any time before or during the pro-
ject can be tracked for consistency, and any
changes noted to facilitate a relationship analysis
between the project and the resource occurrence
values accumulated during the process.

5207

A simple example of the application of this strue-
ture would be where the process organization is
changed during the development, say a change
toward greater user involvement. This change
would be reflected in a difference between the
estimated project characteristic and those at the
point in time at which the change occurred. This
information is then used to explain variances that
occur in the process data, such as a changed pat-
tern in staff utilization.

Examples of the data stored at the project level
would include:

- the type of project
e.g.real time, business application

- the project elapsed time

- the total project effort

- the total project cost

- the type of development process
e.g. evolutionary

- the target computer

- the development computer

- the project deliverables

- the project milestones

- the project risk profile

The application of the TDC model at this level

. provides a mechanism for storing estimates, accu-

mulating actual values, and facilitating feedback
and learning at the level of the project and its
development environment.

If we take the project milestones as an example
and assume that the milestones apply equally to
all resource types, then the model suggests we
store:

- estimalted desirable milestones. This is an
"ideal world” view of the project milestones;
the dates at which we could deliver if we were
not constrained.

- estimated accessible milestones. Given the
constraints we will be working under, these are
the dates at which we could deliver if it were
necessary.

- estimated utilized milestones. These are the
dates at which we expect to deliver, taking into
a'cbclount the dimensions of desirable and acces-
sible.

. These three views, in their values and difference,

provide a perspective on the risk associated with
the project; the smaller the difference between the
categories, the higher the risk. More specifically,
the difference between estimated desirable and
estimated accessible shows the extent to which
elapsed time could be changed if the constraints
could be modified. For example, if the estimated
final desirable milestone were June 30th and the

estimated final accessible milestone was August
30th, the difference of two months measures the
estimate of the extent to which the project could
be compressed if the restricting constraints could
be be removed.

The difference between the estimated accessible
and the estimated utilized provides a measure of
the available slack in the milestones. This
difference is the extent to which the milestones
could be compressed, without modifying the pro-
ject constraints. In the example above, the
estimated utilized final milestone might be say
November 30th. In this case the difference
between accessible and utilized of three months
reveals the amount of elapsed time compression
that is possible on this project without changing
constraints.

In these relationships we see some of the dynamic
nature of the project characteristics. This suggests
that for the TAME measurement environment, if
a change in project characteristics such as the
nature of the process occurs, then this should
trigger the review of the project milestone and
effort values, which will also be reflected at the
lower level in the task and resource data values.

In the actual category we need to store the :

- octual desirable milestones. As explained
above, this category is used for feedback and
learning. It carries the values calculated after
project completion based on the knowledge
gained about the project during its completion.
This value is again an "ideal world” value.

- actual accessible milestones. This is also a
feedback and learning category which says,
based on the constraints which did eventuate
in the process what milestones could have been
achieved?

- actual utilized milestones. This category stores
the dates of the nmilestones achieved.
Differences between actual and estimated are
stored in a feedback facility to provide 2
mechanism for learning and a mechanism for
calculating the actual desirable and accessible
at project end.

3.4.2 At the resource level

The description of the use of the TDC structure
at the resource level amounts to a process model
of resource planning and use in software develop-
ment. This process can be described as an
interacting three-stage process involving the sub-
processes of:

1. planning
2. actualization
3. review

The plannsng process establishes and records the
resource expectations or estimates before and dur-

5207

ing the software project, and the actualization
process tracks and records the actual use of
resources during the software project. The review

process compares actuals with estimates for the

purposes of modifying the estimates and learning
from experience. In this way the feedback referred
to above provides information for an historic
resource database for future planning and estima-
tion. Details of this process model are given in
[Jeffery, Basili 87].

Application of the planning and review
cycles

In any particular organization, it may be deemed

sufficient to use only a part of the planning and.

review processes outlined here, and therefore only
a part of the TDC structure presented in this
paper.

For example organizations may not wish to use
project reviews, or they may not consider it
appropriate to carry out forma! contingency plan-
ning or risk management. At the simplest level
only the estimated utilized and the actual utilized
may be used, perhaps providing input to an infor-
mal project learning process which occurs at the
individual leve),

Specifically, it is most Iikely that in software _
environments with very little uncertainty (say an-

implementation of the twentieth slightly different
version of a well known system) there may be no
need to explicitly consider the desirable or even
accessible dimensions of the resource model. If
uncertainty is very low, the utilized level of the
model may capture all the necessary data. The
advantage of the model in this case is that the
data excluded is done so in the knowledge that
there is no information in those levels not used.

In higher uncertainty environments, the model
prompts the estimator to think explicitly of the
resource risks and uncertainty of the development
process, and to quantify or express that risk as a
part of the resource database. :

4. VALIDATING THE MODEL

Three significant pieces of work in the literature
which provide definitions of the types of data
needed to support the measurement of the
software process are [Penedo, Stuckle 85],
gTausworthe 79, and [Data & Analysis Center for
oftware 84, STARS Measurement DID Review].

Penedo and Stuckle (P&S) provide an excellent
structure and content of a project database for
software engineering environments which can be
used here to test whether the model resulting
from the top-down methodology employed is able
to encapsulate all of the process data suggested by

“them as needed in a project database, Table 1

194

3-44

lists the entities identified #y Penedo and Stuckle
and associates the particular model categories
which would be used in the model derived here to
describe them.

1

! i

]

il

VN

i

Bl

i

L

i

i

1

il

1

f

f

The first aspect which is noticed when mapping
the 31 P&S entity types to the TDC mondel is that
the broad structure presented in section 2 above
(The Project Environment Characteristics) is an
important link between the software process and
product. The P&S list contains entities for the
project, task, product, and resource categories of
Figure 2. In table 1 the P&S entities such as the
requirement and risk have been categorized as
project characteristics, while entities such as data
component, external component, document, inter-
face, product description, product, and software
component have been categorized as product
instances.

But the focus of this paper is not on the project
or the tasks which go together to make up that
- project. Rather the focus is the resources con-
sumed by those tasks. In this respect we notice
that only a subset of the available TDC categories
are used in the P&S entities. For example, at the
Resource Type level we see instances of all four
categories (Hardware, Software, Human, and Sup-
port), but at the next level it appears that the
P&S model concentrates on actual values. It is
difficult to see how the P&S model stores values
for estimates, and particularly how the informa-
tion explaining divergence between estimate and
actual can be stored. The same applies to the
Availability level of the TDC structure. The P&S
model appears to concentrate on the Utilized
aspect and does not appear to model the other
availability dimensions presented in the TDC
structure. This may well be because these dimen-
sions of resource data were considered not to be
necessary in the environment of the P&S study.

5207

195

Table 1. P&S Database Entilies in The Model Structure

Penedo & Stuckle
Eatities

Top Down Model
Categories

Accountable Task
sad Contract

Change Item
Consumable Purchase

Data Component
Dictionary

Document

Equipment Purchase
External Component
Hud\vuje Architecture
Hardware Component
Ioterface

Milestone

Operational Scenario
Person

Problem Report
Product

Product Description
Requirement

Resource

Risk

Simulation

Software Component
Software Configuration

The task and contract are the

convergence of process

and product and subsets of the project.

It isin & contract

ot task that resources sre consumed

to produce the product. They are not,
therefore, resource entities.

This item is generally assoziated

with 8 product chaage.

*Support resource, incurrence and svailability
not specifled.

Produet Entity

*Software resource, or perhaps product entity
Product Entity

*Hardware resource

“Hardware resource or perhaps Product Eatity
*Hardware resource or perhaps product entity
$Hardware resource or product entity
Product Entity

*Project Entity

Product Entity

*Human Resource

*Process a8 part of feedback or Product entity
Product Entity

Product Entity

Project Entity

*Support resource

*Project Entity

Product entity

Product Eatity

Product Entity

Software Executable Task Product Eatity
Software Purchase *Soltware resource

Test Case *Software resource and/for product entity
Test Procedure *Task or project characteristic
Tool *Software resource

WBS Element Project Decompoasition Eatity, may be the same

a3 accouniable task and contract

It remains to be seen, of course, whether all of the
categories available in the TDC structure are
deemed necessary in any particular environment.
However, the advantage of such a structure is
that exclusion of certain categories of data occurs
explicitly rather than implicitly.

The second model suggested as a means of testing
the TDC model is that provided by [Tausworthe
78]. In this work the model’s entities are not
presented in a list form, but are included in text
discussion and report forms. For this reason it has
been necessary to convert the form to a list of
entities. In doing so it is always possible that
misconceptions of Tausworthe's ideas may be

. bresent. However, even if incomplete, it provides

another test of the suitability of the TDC model.

The Tausworthe structure is very much oriented
towards a decomposition of the project into tasks
and the association of resources with those tasks.
Thus the modelling approach used by Tausworthe
is somewhat at a tangent to the modelling
approach used here since once again our focus is
on resources, not the activities which consume
those resources. This is not to say, however, that
it is not necessary to associate resources with
tasks, but that it may_be necessary to model
resources apart from the thsks that consume them .
in order to better understand all of the dimen-
sions of resource data.

3-45

The entities listed here are a partial list derived
from the work breakdown structure, the software
technical progress report, the software change
analysis report, and the software change order of
Tausworthe’s model. From these sources the fol-
lowing resource data, among others, were
identified as necessary to establish a resource
database. Only some Of the Tausworthe entities
have been listed here. This has been done to the
extent that is necessary to illustrate the conclu-
sions drawn.

From Table 2 it is clear that the focus of atten-
tion in the Tausworthe work is the project and
the decomposition of that project into its com-
ponent parts. Thus we see that the resource data
is associated with particular tasks and activities.
In viewing the data in this way a structure is pro-
vided which is excellent for control purposes, in
that it establishes units of accounting which are
more easily estimated and controlled. What is not
clear from the structure, however, is how ques-
tions of desired versus accessible resources can be
modelled, nor exactly how actual versus estimated
can be compared and conclusions stored for use in
later project estimates. It is also difficult to see
how the model proposed in the WBS can easily
facilitate the analysis of resources consumed on a
particular activity type (say inspections), regard-
less of the project phase in which the inspections
were done or the project task in which ‘they were
done. Thus questions such as the value to the pro-
Ject of using a particular form of inspection may
be difficult to answer because the data model may
make this data difficult to isolate.

Tuble 2. Tausworthe Derived Entity List

Tausworthe Top Lowa Model
Entities Calegories o=
Stall: Humaa resource, estimated or sctual
Staf 1D.
Stafl Name
Staff Phone [, :
Tuk Activity: Tbe dollar value may be s sum of all resourées
Tusk [D. consumed on s Laak-activity, estimated or sctual
Task Activity 1D,
Budget §
Task: The value is & sum of all resources, estimated
Task [D. and/or actusl
Task Nume
Task Deser -
Task M'ger

Task Budget §, ETC.
Software Change Order

S/ware D

Change Order #

Activity ID

Person ID

Description

Start Date, ete,

The focus is again on the setivity. The resources
may be any type, estimated or actual,

However, it is clear that the resource data sug-
gested as necessary by Tausworthe are readily
modelled in the TDC structure. The importance
of the application of the TDC model to the pro-
ject and task level is highlighted by Tausworthe
and also Penedo & Stuckle, so that the associa-
tion of resource data and project work breakdown
structures can be facilitated.

5207

Perhaps the most detailed resource data collection
forms developed so far has been that of the
STARS Measuremem Data Item Descriptions,

The information which follows in Table 3 was
derived from stars Software Development
Environment Summary Reports DI-E-SWDESUM,
DI-F-RESUM, DI-F-REDET, o8 JULY 1984].
These reports contained information most
relevant to the task of validation of the TDC
model. The data suggested as necessary by these
reports concerned aspects of the project, the pro-
cess, and the product. In this paper only those
aspects concerning the project and the process
have been listed. As with the Penedo and the
Tausworthe models, the data model implied in the
work appears not to have been developed on the
basis of a theoretical structure, but rather from a
pragmatic evaluation of those data items deemed
necessary for project management. In addition,
because the data items are

listed in the context of data capture forma, some
rearrangement of these items has been carried out
in the following data list in order to provide a
clearer presentation of these items.

Bl i

u

1

bl

I

| B

d

L

==
L]

TABLE 3. STARS Measurement Data Items

Descriptions
A. PROJECT NAME B. SITE CONFIGURATION INFORMATION
Project Name . Site ID
Contractor - Description (development, test)
Contract No. Computer manufacturer
Start date, Finish Date Model name
Software Level (System, Subsystem, CSCI) Model no.
Application Type no. of persons accessing site
Application description no. of input terminals
Revision of current project (y/n) Terminals in each programmers office (y/n)

Revision -version no. Input terminals in central area (y/n)

% of software redeveloped no. of card readers
Total no. lines of source code no. of printers

Initial development (y/n) - no. tape drives

if y - Total no. lines source code no. disk drives

no. of instructions other peripherals.(specify).
no. of data words no. documentation sets on hardware/software

System Structure- . environment available

single overlay no. site support personnel

multiple overlay amount of storage in development computer

(# overlays, avg. sise bytes main memory real
independent subsystems ' main memory virtual
(# subs, avg.size bytes aux memory

virtual memory system
(amount of addressable memory, size bytes

Progamming language and %5 used DEVELOPMENT SITE ACCESS
Constraints -
Execution Time, rating . Site ID.
Main memory size, rating Access type: % batch
Product Complexity, rating % interactive
Database size, rating Average job turnaround time
Methodology, rating no. hours per day development site available
required reliability, rating no. days per week development site available
Other, rating no. hours per day utilized
Concurrent Hardware development {y/n) no. days per week utilized

Operational site development (y/n)
Multiple site development (y/n)

no. of development sites TEST SITE ACCESS

no. of test sites (if different)

Other Constraints .(text). : Site ID.

cost estimation assumptions made no. hours per day test site available

cost estimation methods used and supporting no. days per week test site available
rationale no. hours per day test site utilized

rationale for discrepencies between current no. days per week test site utilized

estimates and all previous estimates

5207

C. PROJECT PHASE INFORMATION
fexamples]

requirements

Development system used (y/n)

Documents maintained on the dev. system (y/n)

Methodology (formal spec., functional spec.,
procedural spec., english spec., none, other)

Tools/Formalisms (requirements analyzer, word
processor, on-line editor, ¢.m.t., librarian,
spec laog, PDL, none, other)

start and finish date

deliverables

design

Development system used (y/n)
Documents developed/maintained on system (y/n)
Methodology (top down, bottom up, hardest

first, prototyping, iterative enhancement,

none, other) 7
Tools/Formalisms { software dev. folders,

design reviews, walkthru's, flow charts,

HIPO, etc.)
start and finish date
deliverables

implementation

Development system used {y/n)

Documents maintained on development system (y/n)

Unit testing performed on dev. system (y/n)

Methodology (top down, cpt, prototyping, ete.)

Tools/Formalisms (code reading, pre-compiler,
dbms, etc) .)

start and finish date

deliverables

test and integration

Testing performed on development system (y/n)
Documents maintained on system (y/n)

Level of testing performed on dev system
Methodology (spec driven, top down, nene, etc)
Tools/Formalisms {......)

start and finish date

deliverables

D. PROJECT PERSONNEL INFORMATION

[these values can be derived from more detailed
records]

Project Name

Job Classification (supervisor, consultant,
analyst, programmer, site operator,
librarian, other) '

Avg. no. years application experience

Avg. no. years experience with software

Avg. no. yrs software training

Avg. no. yrs programming language experience

Avg. no. yrs hardware experience

Avg. capability rating

communication
Regular project status meetings (y/n)
How often?

Persons typically in attendance
(classification, No.)

5207

E. RESOURCE EXPENDITURE ATTRIBUTES

summary level
[these values may be derived]

Project name

total system cost, estimated, actual

total software cost, estimated, actual

total labour cost $, estimated, actual

total software labour cost $, estimated, actual

total labour hours, estimated, actual

total soltware labour hours, estimated, actual

total stafl size, start, finish, estimated,
actual .

total software staff size, start, finish,
estimated, actual

total computer costs $, estimated, actual

total software computer costs $, estimated,
actual

total computer hours, estimated, actual

total travel costs § -

total material costs $

total miscellaneous costs $

[these may be divided by milestones or activities

labour costs
{these values may be derived]

labour category id

total hours

no. of people, start, finish
cost §

computer hours
computer costs $

computer costs -
[these values may be derived]

no. of computers used
no. of different types of computers
total computer hours

*** for each computer***

computer i.d.

number of hours

total computer costs §
cost of each computer §

task costs
[these values may be derived]

task i.d.
definition
personnel costs
software costs
hardware costs
supplies costs

4*{or each task*4 s*08{or each taskd**e
****for each labour category®***
total cost of labour

total hours total hours of labour

no. of people, start - finish total cost of computer
cost § total hours of computer
computer hours total cost of travel
computer cost $ total cost of materials
travel cost § total] cost of miscellanecus

3-48

=]
-l

gl

I

LY

{1

The Table provides data items to describe the
project, development and test site configurations
and access, project phases, personnel assigned to a
project, and resource expenditure summaries. The
detail shown here has been selected to highlight
the volume of data items which will be necessary
in a measurement system.
fl

In terms of the TDC'Eodel, the STARS list shows
recognition of the need to store resource availabil-
ity in that the development and test site access
data includes an accessible and a utilized dimen-
sion. There appears, however, to be no facility for
storing the desirable dimension suggested in the
TDC model. The STARS list also shows extensive
use of the incurrence dimension in section E -
Resource Expenditure . Attributes, wherein
estimated and actual resource use is tracked. The
USE DESCRIPTORS of work type, point in time,
and resource utilized are also extensively used in
the STARS list. It is not possible from the docu-
mentation, however, to determine the reasons that
the availability dimension was not applied more
extensively in the data model (for example acces-
sability of personnel or specific hardware or
software items are not modelled). It can be
assumed that it was considered to be innappropri-
ate for entities other than site access.

The STARS data list provides considerable sup-
port for the theoretical structure provided in the
TDC model. It reveals a considered need for the
storage of :

1. Project information

2. Resource type information
3. Incurrence information

4. Availability information and
5. Use descriptors

Of considerable significance is the fact that none
of the three schemas considered here have sug-
gested data entities or items which cannot be suc-
cessfully modelled using the TDC structure. It
appears that the schemas considered here may be
incomplete when compared with the TDC struc-
ture, but the reasons for the apparent exclusion of
data entities and items are not known, but may
be based on purely pragmatic reasons.

5. CONCLUSIONS AND IMPLICATIONS
AT THE RESOURCE DATA LEVEL

The model presented here is meant to be general
and provide a perspective for project manager and
organization in identifying and tracking resources.
It should help in better understanding the
compromises made in resource allocation. How-
ever, it is assumed that any project (or even
organization) will work with a subset of this
model. For example, one might limit the number
of availability views, such as combining desirable
and accessible, or track only a subset of the
resource categories. The subsetting process pro-
vides feedback on what has not been tracked. The
actual data collected is driven by the
goal/questionémetric paradign based upon the
goals set by the project and the organization.

5207

The conclusions to be drawn from this research
can be divided into two categories: those concern-
ing the model itself, and those concerning the
validation of that model.

In terms of the model itself, the discussion has
suggested storage of resource data of a type which,
has significant storage and access implications;
that of numeric and non-numeric project and
resource data. It has been assumed in the discus-
sion that the resource database is able to store
not only numeric resource values, but also reasons

for those values along with the resource environ-

ment characteristics.

A system using these suggestions should be able
to efficiently search the numeric and non-numeric
data in a manner which will eventually enable the
system to propose reasons for numeric variances
which occur in the database. In this way the sys-
tem must be able to not only highlight a
significant variance, say between an estimated
and an actual resource occurrence value, but it
should also be able to search the project charac-
teristic database and the numeric and non-
numeric resource classification database in order
to propose or associate reasons for the variance.

It can be said that the model presented here has
four broad implications :

1. It proposes a resource categorization
which will allow project database designers to
explicitly consider the content of that database
against a model of the resource environment. In
this way, a particular individual’s view of the
resource data can be positioned in a context and
compared with other external views of the same
data. This model should motivate the resource
data user to consider the measures that may be
beneficial in seeking improvement in the particu-
lar process goals.

2. It suggests a project management
system's environment which will be able to
achieve far more in terms of management support
than any known environment available today. It
is able to do this because of the extent and
dynamic nature of the model of the resource data
proposed.

3. It provides a resource categorization
which can be used when considering relationships
between tasks or contracts and resources.
Specifically it provides a focus for the considera-
tion of the resources consumed within a task.

4. It provides assistance when applying the
Goal/Question/Metric process paradigm, so that
questions which answer the resource purpose of
the study are highlighted and the measures
appropriate to those questions are suggested.

In terms of the validation of the data model we

have seen by reference to three published models
that the proposed theoretical structure for
resource data is able to encompass all that has
been suggested as necessary for resource manage-
ment. Also of significance, is the fact that each of
the publications used contains different views of
the necessary data and that each one omits cer-
tain elements that the other appears to consider
of benefit. This is, of course, the norm in compar-
ing different external views in a database design
exercise. One advantage of the TDC model is that
it is able to act as a data model template, sug-
gesting the data categories which need to be con-
sidered when designing a resource data schema. If
it is used in this way the data items excluded
from the particular resource model instance will
have been excluded on the grounds that they are
deemed unneccesary in the particular environ-
ment, rather than being excluded because the
category of data (for example, estimated desir-
able hardware for testing) was not noticed by the
data base designers as necessary. _
Thus we can be confident that the theoretical
model proposed in the TDC structure can contain
all of the project and resource data so far sug-
gested in the literature as necessary in a resource
management environment. In addition it appears
that there may be project and resource informa-
tion of use in resource management which has not
been included in prior models. The practical need
for this additional information has ‘not been
justified in this piece of research but is the subject
of other current work by the authors.

We have begun to apply the model independent
of TAME in a couple of industrial environments
and have found it provides a useful framework for
planning and tracking resources throughout a pro-
ject. We have not yet reached the stage where we
have been able to evaluate the feedback process,
however.

8. REFERENCES

[Barstow 87] D. Barstow, "Artificial Intelligence
and Software Engineering,” Proc. 9th Intn'l. Conf.
on S'ware.Eng. IEEE, Monterey, April, 1087,
pp.200-211, - - =

[Basili 85] V.R.Basili, "Quantitative Evaluation of
Software’ Engineering Methodology,” Proc. First
Pan Pacific Computer Conference, Melbourne,
Australia, September, 1985.

LB&sili, Freburger 81] V.R.Basili, K.Freburger,

Programming Measurement and Estimation io
the Software Engineering Laboratory,” The Jour-
nal of Systems and Software, 2, 1981, pp. 47-57.

Basili, Panlilio-Yap 85| V.R.Basili, N.M.Paalilio-

ap, "Finding Relationships Between Effort and
Other Variables in the SEL,” Proc. 9th COMP-
SAC Computer Software & Applications Confer-
ence, Chicago, October, 1985, pp. 221-228.

5207

LBasili, Rombach 87] V.R.Basili, H.D.Rombach,
Tailoring the Software Process to Project Goals
and Environments,” Proc. 9th Intn'l. Conf. on
S'ware Eng. Monterey, April, 1987, pp. 345-357.

Basili, Selby, Phillips 83] V.R.Basili, R.Selby,
.Y.Phillips, "Metric Analysis and Data Valida-
tion Across FORTRAN Projects,” IEEE Trans. on
Software Eng. Vol. SE-9 No.8, November, 1083,
pp.852-663.

Basili, Weiss 84] V.R.Basili, D.M.Weiss, "A
Methodology for Collecting Valid Software
Engineering Data,” IEEE Transactions on
Software Engineering, SE10,3, November,1984,
pp.728-738.

Bernstein 87] P.A.Bernstein, "Database System
upport for Software Engineering,” Proc. §th
Intn'l. Conf. on S'ware. Eng., Monterey, April,
1987, pp. 168-178. =~ ’

Boehm 81] B.W.Boehm, Software Engineering
conomics, Prentice-Hall Englewood Cliffs, New
Jersey, 1981.

[Chrysler 78] E.Chrysler, "Some Basic Deter-
minants of Computer Programming Produc-
tivit,yé" Comm. of the ACM, 21,6, June, 1978, pp.
472-483. .

leata & Analysis Center for Software 84] STARS
easurement Data Item Descriptions, Data &
Analysis Center for Software, RADC/COED,
Griffiss AFB, NY. July, 1984,
LJeﬂ'ery 87a] D.R.Jeflery, "The Relationship
etween Team Size. Experience, and Attitudes

and Software Development Productivity,” Proe.

COMPSACS87?, Tokyo, October, 1987.

[Jeflery 87b] D.R.Jeffery, "A Software Develop-
ment Productivity Model for MIS Environments,”
Jnl. of Systems And Software, June, 1087,

Jeffery, Basili 87] D.R.Jeflery, V.R.Basili,
Characterizing Resource Data: A Model for Logi-
cal Association of Software Data,” Technical
Report TR-1848, University of Maryland, May
1987, 35pp.

Jeflery, Lawrence 78] D.R.Jeflery, M.J.Lawrence,
An Inter-Organizational Comparison of Program-
ming Productivity,” Proc. 4th Intn'l Conf. on
S’ware. Eng. Munich, 1979, pp.369-377.

Jeflery, Lawrence 85| D.R.Jeflery, M.J.Lawrence,
Managing Programming Productivity,” The
Journal of Systems & Software, 5,1, February,
1985, pp. 49-58. - = -

Jones 86] T.C.Jones, SPQR/20 User Guide V1.1,
oftware Productivity Research Inc. January,
1988. . -1

-4

L

al|

—_
==
-

}Nelson 87] E.A.Nelson, "Management Handbook
or the Estimation of Computer Programming
Costs,” System Development Corporation, Saata
Monica, March, 1067.

SNunamaker, Applegate, Konsynski 86]
F.Nunamaker, L.M.Appiegate, B.R.Konsyunski,
»*Facilitating Group Creat{vity: Experience with a
Group Decision Support System,” Proc. 20th
Annual Hawaii Intn’l. Conf. on System Sciences,
Hawaii, January, 1987, pp.422-430.

LPenedo, Stuckle 85] M.H.Penedo, E.D.Stuckle,
PMDB - A Project Master Database for Software
Engineering Environments,” Proc. 8th Intn'l.
Conf. on S'ware. Eng., London, August, 1985, pp.
150-157.

Putnam 81} L.H.Putnam, "SLIM A Quantitative

ool for Software Cost and Schedule Estimation,”
Proc. NBS/IEEE/ACM Software Tool Fair, San
Diego, CA, March, 1981, pp. 49-57.

Sackman, Erikson, Grant 68] H.Sackman,

.J Erikson, E.E.Grant, "Exploratory Experimen-
tal Studies Comparing Online and Offline
Programming Performance Comm. of the ACM,
11,1, 1968, pp. 3-11.

gausworthe 79] R.C.Tausworthe, Standardized
evelopment of Computer Software: Part 1I Stan-
dards, Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1979.

[Valett 87] J.D.Valett, "The Dynamic Manage-
ment Information Tool (DYNAMITE): Analysis of
the Prototype, Requirements and Operational
Scenarios,” M.Sc. Thesis University of Maryland,
1087.

Walston, Felix 77] C.E.Walston, C.PFelix, TA

ethod of Programming Measurement and Esti-
mation,” IBM Systems Journal, 16,1, 1977, pp.54-
73.

Wolverton 74| R.Wolverton, "The Cost of

eveloping Large Scale Software,” IJEEE Transac-
tions on Computers, 23,8, 1974.

5207

e Ime ine

Him

I

[

i) J

SECTION 4 — ADA TECHNOLOGY STUDIES

. L

.
£

o
mu} d

W\L u | ‘m“”‘m‘ .

L..

ECTION 4 — ADA TECHNOLO IE

The technical papers included in this section were originally
prepared as indicated below.

° *"Experiences in the Implementation of a Large Ada
Project,"” S. Godfrey and C. Brophy, Proceedings of
the 1988 Washington Ada Symposium, June 1988

® "General Object-Oriented Software Development with

Ada: A Life Cycle Approach," E. Seidewitz, Pro-
ceedings of the CASE Technology Conference, April

1988

° "Lessons Learned in the Implementation Phase of a
Large Ada Project,” C. E. Brophy, S. Godfrey,
W. W. Agresti, and V. R. Basili, Pr ings of th

Washington Ada Technjical Conference, March 1988

["Object-Oriented Programming in Smalltalk and Ada,"
E. Seidewitz, Proceedings of the 1987 Conference on

Object-Oriented Programming Systems, Langquages and
Applications, October 1987

5207

EXPERIENCES IN THE JHMPLEMENTATION OF A LARGE Ada PROJECT

Sally Godfrey
Code 552
Goddard Space Flight Center
Greenbelt, Md.20771
(301) 286-3600

BACKGROUND

During the past several years, the
Software Engineering Laboratory (SEL) of
Goddard Space Flight Center has been
conducting an experiment in Ada [6],[8] to
determine the cost effectiveness and
feasibility of using Ada to develop flight
dynamics software and to assess the effect
of Ada on the flight dynamics environment.
This experiment consists of near parallel
developments of a dynamics simulator in both
FORTRAN and Ada. A study team consisting of
members from the SEL has monitored
development progress and has collected data
on both projects throughout their
development.

Both the Ada and the FORTRAN teams
began work in January, 1985, using the same
set of requirements and specifications to
develop their simulators. The FORTRAN
dynamics simulator team completed acceptance
testing by June, 1987, after following a
development life cycle typical of projects
in the flight dynamics environment [5]. The
development was carried out on a DEC VAX-
11/780 and the completed FORTRAN dynamics
simulator consists of about 45,000 source
lines of code.

The Ada development began with a period
of training [7] in both the Ada language and
the methodologies appropriate for Ada [11].
The team was not previously experienced in
Ada, although they were more experienced
than the FORTRAN team in both the number of
years they had programmed (8.6 years
compared to 4.8 for the FORTRAN team) and
also in the number of languages they knew (7
compared to 3). The Ada team was also
experienced in more types of software
applications, but only 43% of the Ada team
had previous dynamics simulator experience
compared to 66% of the FORTRAN team.

5207

Carolyn Brophy
Department of Computer Science
University of NRaryland
College Park, Md. 20742
(301) 454-8711

Following the training period, the Ada
team began a phase of analyzing the
requirements and then they began. design
using an object oriented methodology called

GO0D (General Object Oriented Design) which

was developed by the team during the
training and design phases. More
information on GOOD and the lessons learned
during the design phase can be found in [2],
[4], and [10].

Coding and unit testing began in April,
1986, on a DEC VAX 8600 and continued
through June 1987. The Ada project has
completed system testing and consists ?f
approximately 135,000 source Tines of code!.
This paper will describe some of the
similarities and differences of the two
projects and will discuss some of the
intéresting lessons learned during the
code/unit test and integration phases of
this project.

INFORMATION COLLECTION

The information presented in this paper
was collected by using the following four
methods: 1) Collection of SEL forms
2) Interviews 3) Observation of development
4) Code analysis. The SEL forms solicit such
information as a detailed breakdown of the
hours spent by programmers, managers, and
support staff on a project and detailed
information on changes and errors which
occurred during the development. During the
course of the project, over 2000 forms were

collected; about 625 of these documented-

errors and changes.

1. A source line of code is defined to be
any 80 byte record of code 1including
commentary, blank lines and executable code.

u

[V [l

L

i

= =

Wil

Bl

K

u

i

Each member of the Ada team (11 total)
was interviewed individually to gain some
insight into the experiences he or she had
during implementation. Team members were
asked questions concerning ease or
difficulty of implementing features, unit
testing, integration, correcting errors,
using tools, etc. Questions concentrated on
an individual’s particular area of work, but
general subjective questions were asked of
the entire team. Observation of the
development was accomplished by attending
reviews and regular implementation meetings
held by the team. These regular
implementation meetings were actual working
meetings in which team members discussed
progress, solved implementation problems,
clarified interfaces, shared knowledge, and
planned implementation strategies. In
addition, much information was gained
through informal conversations with the team
on implementation progress. Information
received through code analysis was actually
collected two ways. First, the code was
examined to tabulate such attributes as
number of modules, number of lines of code,
number of comments, etc..Second, another Ada
team, in the process of Ada training,
performed code reading on parts of the
dynamics simulator code as a training
exercise and they provided their comments on
the code.

The remainder of this paper will
concentrate on some interesting comparisons
between the FORTRAN and the Ada projects and
some of the major lessons learned during the
implementation phase of the Ada project.

1. FORTRAN/Ada PROJECT COMPARISONS

Several factors need to be considered
when trying to directly compare metrics from
the FORTRAN project and those from the Ada
project. First, the FORTRAN project was
considered to be the "real” operational
version of the dynamics simulator being
developed, and as such, it was necessary for
that project to meet the schedules imposed
by an impending launch date. The Ada team,
on the other hand, was allowed a more
relaxed schedule for development which
included adequate training time, time to
experiment with design methodologies, and
finally, time to recode or enhance if
"better"” methods occurred to the developers.
One result of this extra time was the
development of a much more sophisticated
user-interface for the Ada project.

5207

Second, this general type of dynamics
simulator was a very well-known application
for the FORTRAN team since similar
simulators have been built repeatedly in
this environment. Thus, the general design
of the FORTRAN simulator was reused from
previous designs and was known to be a very
satisfactory design for the application. In
addition to the design, much of the code was_
reusable--about 36%. The Ada team developed
a new design [1] which they felt was more
suitable for Ada and which they felt more
accurately represented the actual physical
system they were trying to simulate. While
this design may be a better physical
representation of the problem, it did not
have the advantage of previous use to refine
and correct any possible problems. No Ada’
code was available for reuse but several
FORTRAN routines were used by the Ada team.
These comprised only about 2% of the code.

Keeping in mind these differences in
the actual projects, we will discuss some
interesting FORTRAN/Ada comparisons.

1.1 Size of Ada project is larger than
FORTRAN project.

As mentioned in the background section,
a simple count of the number of lines of
code, including every line of any type as a
line, yields a count of 135,000 source lines
of code for the Ada project and a count of
45,500 source lines of code for the FORTRAN
project. These figures are really a little
misleading, since the Ada line count
includes 23,000 lines of blank lines which
are inserted for readability. Also, the Ada
count includes 49,000 lines ‘of comments
compared to 19,500 lines of comments in the
FORTRAN count. When the number of executable
lines of code are compared, we find that the
Ada project has 63,000 lines of executable
cade compared to 25,500 for the FORTRAN
project.

In these particular projects, there
were other reasons why the Ada project was
larger. As we mentioned earlier, the Ada
project was not constrained by schedule
pressure and so they developed a system with’
more functionality--a system with more of
the "nice to have, but not required”
features. Naturally this increased the size
of the system. To some extent, the Ada
language itself was a driving factor for the
size difference, since it requires more code
to write such constructs as package
specifications, declarations, etc. In

addition, the Ada team used a style guide
[3] that required certain constructs to be
spread over several lines of code for
readability.

Another interesting way to compare the
size of the two projects is to examine the
size of the load modules for each one. This
also shows the Ada system to be larger-
occupying 2300 512-byte blocks, compared to
953 512-byte blocks for the FORTRAN Toad
module.

1.2 Project cost is similar for the two
implementations.

One of the problems with trying to
compute productivity 1is that there are
many ways to compute it. Usually, in the
Software Engineering Laboratory, the
calculation is made by taking the total
number of source lines of code developed and
dividing by the number of hours spent on the
project. The number of hours is carefully
recorded on forms weekly and includes the
hours spent on all phases of the project
beginning with requirements analysis and
ending with the completion of acceptance
testing. In order to compare the FORTRAN and
Ada projects, the calculations were made
using the number of hours spent on each
project from requirements analysis to the
completion of system testing since
acceptance testing has not yet been
completed on the Ada system. As we see in
figure 1, using the total number of source
lines of code (SLOC) for each project, we
get a productivity of 3.8 SLOC/hr. for the

FORTRAN project and a productivity of 6.:
SLOC/hr. for the Ada project. Rememberinc
that the Ada code included many blank line:
of code that were not included in the
FORTRAN Tline count, we recomputed the Ad:
figure, excluding the blank lines and got :
productivity of 5.2 SLOC/hr. When we
considered the effort required- just tc
develop new lines of code and not the
reusable code, the figures are 2.7 SLOC/hr.
for FORTRAN and 6.1 SLOC/hr. for Ada with
blanks and 5.0 SLOC/hr. without blanks. This
would seem to imply that Ada is more
productive, but we must remember that it
took many more lines of code to develop the
Ada system and that the style guide caused
many Ada constructs to be spread over
several lines, ——-——:

Let's look.at the figures when we

. consider only executable lines of code.

Using only the number of lines of code which
are executable, we got a productivity figure

of 2.14 SLOC/hr. for the FORTRAN project and”

2.8 SLOC/hr. for the Ada project. When we
considered that many of the Ada constructs
use more than one line, we Tooked at the
number of executable statements - (or
semicolons) 1in the Ada project and
recomputed productivity. Similarly for the
FORTRAN, we counted statements and their
continuations as one executable statement.
Now we get a productivity of 1.85 SLOC/hr.
for the FORTRAN project and .96 SLOC/hr. for
the Ada project. Looking at the number of
executable new statements in the FORTRAN
yields a figure of 1.2 SLOC/hr. compared to

.95 SLOC/hr. for the Ada project. These
calculations wou1d make FORTRAN Tlook more
productive.

Ada -

5207

O “FORTRAN
Lines of Code Lines of Code
Used for Computation | Productivity || Used for Computation | Productivity
Total lines of code 3.8 SLOC/hr || Total lines of Code 6.17 SLOC/hr
Total lines of code Total lines of code g
excluding blanks 3.8 SLOC/hr || excluding blanks 5.12 SLOC/hr
Executable lines Executable lines -
of code 2.14 SLOC/hr | of code 2.8 SLOC/hr
New lines of code 2.7 SLOC/hr || New lines of code 6.08 SLOC/hr
New lines of code New lines of code
excluding blanks 2.7 SLOC/hr || excluding blanks 5.03 SLOC/hr
Executable statements | 1.85 SLOC/hr || Executable statements | 0.96 SLOC/hr
Executable “new” Executable “new”
statements 1.2 SLOC/hr || statements 0.95 SLOC/hr

Figure 1: Productivity Comparisons

4-4

B

i

&

RV

i

Qi m

U m

|

|

Perhaps a better way of viewing the
productivity problem is to examine it from
the standpoint of cost to produce the
product. The total cost of the FORTRAN
project from requirements analysis through
acceptance testing was about 8.5 man-years
of effort. The Ada project cost, using
actual figures from requirements analysis
through system testing and estimating the
acceptance testing cost, is around 12 man-
years of effort. When we take into
consideration the percentage of reused code
in the FORTRAN project and assume all the
code generated was new code,it would have
taken about 11.5 man-years of effort to
develop the FORTRAN system. This makes the
cost of developing the two systems roughly
the same, especially when we consider that
the Ada project was a "first-time* project
and that the Ada project had slightly more
functionality than the FORTRAN.

1.3 Error types found in both projects
show similar profiles.

Detailed information was kept on the
types of errors found in both projects and
based on 104 forms collected for the FORTRAN
project and 174 forms collected for the Ada
project, the error types show a similar
profile. Figure 2 shows the distribution of
error types for each project.

Error Type® FORTRAN* Ada“
% %
Computational 12 9
Initialization 15 16
Data Value or .
Structure 24 28
Logic/Control
Structure 16 19
Internal Interface 29 22
External Interface 4 6

“There may be more than one error reported ox a form.

8104 forms
€174 forms

”I':igure 2: Error Profile

5207

An example of a computational errovr
might be an error in a mathematical
expression. An error like using the wrong
variable would have been classified as data
value or structure error. Internal interface
errors refer to errors in module to module
communication, while external interface
errors refer to errors in module to external
communications.

Perhaps one result here that is
suprising is that the team expected to have
fewer internal interface errors with Ada,
but the percentage is not significantly
different from the FORTRAN. When the
detailed information on the Ada errors was
examined, we learned that many of the errors
classified as internal interface errors were
caused by a type change of some sort. For
example, a variable may have been classified
as one type in one portion of the code and =
different type in another, or the original
type chosen for a variable might not have
been suitable. Another common reason that
internal interfaces were changed was that a
new function was added to the module which
required an interface change. Also, in some
cases, a developer would find he needed
another variable from some other module
which he did not originally think he needed.

1.4 The percentage of "very easy to
find" errors was less in the Ada project
than the FORTRAN project.

Detailed information was captured on
the effort required to isolate errors .The
error levels were categorized a) very easy
or less than one hour b) easy or one hour to
one day c) hard or one to three days
d) very hard or more than three days. The
FORTRAN team found that 81% of their errors
were in the "very easy" to isolate category.
In comparison, the Ada team found only 59%
of their errors in that category. There are
several possible explanations for this.
First, many of the errors found by the
FORTRAN team were types of errors which
would have been identified by a mor.
rigorous compiler such as the Ada compiler
Throughout the project, the Ada team fel"
that the compiler was one of the most useft
tools because it was able to pinpoint many
errors at the early stage of compilation.
Another possible explanation for the
difference in effort to locate errors is the
difference in experience of the teams with
the language. The Ada team was not

experienced in Ada.and did not feel they had
the same intuition as the FORTRAN team did
to aid in isolating errors.

2. MAJOR LESSONS LEARNED DURING
IHPLEHENTATION OF THE Ada PROJECT

2. 1 A flat structure usua]lyrhas more
advantages than a nested structure. Thus,
nesting should be used sparingly.

The object oriented design used by the
team [9] seemed to promote a nested
structure for information hiding purposes.
While the nesting was not explicitly
specified in the design, it seemed to be a
natural manifestation of the object oriented
design--so the parts of .an object or a
package would be included inside that
package instead of being called in from the
outside. The team felt that they were
implementing nesting conservatively, and
indeed, one view of the system shows that it
has 124 packages of which 55 are Tlibrary
units. However, the nesting in the system
was extensive-—many levels deep in some
places.

This amount of nesting caused many
problems for the Ada developers. First,
nesting increased the amount of
recompilation necessary during
implementation and testing. Many more units
* had to be recompiled when changes were made
to the system since Ada assumes dependencies
between nested objects or procedures even
when there are none. Since compilation is a
Tengthy process, this slowed down the
development process. Much unneccessary
recompilation could have been avoided by the
use of more library units.

Second, nesting increased the difficulty
of unit testing In fact, the greater the
level of nesting, the more difficult the
unit testing was. The Tower level units were
not in the scope of the test driver, and a
debugger was necessary to "see" into these
lower level units. For the purposes of unit
testing in FORTRAN, a unit {is defined as a
subprogram. When this same definition was
applied to the Ada, unit testing
difficulties arose since many of these units
could not be tested in isolation. Instead,
it was necessary to integrate unitsggghjgh
fit logically together, usually integrating
up to the package level, before testing was
done. Nesting also 1ncreased the difficulty

5207

of tracing problems since it {s-hard t
identify the calling module .of a neste
unit.

2.2 A high degree of nesting was foun
to be an imped1ment_f0r reuse.

Perhaps the major advantage of usin
Tibrary units instead of nested units i
that their use increases the potential o
reusability. When nesting is used, the siz
of the compilation units, the componen
sizes and the file sizes all tend to b
larger. Thus when these larger units ar
examined for potential reuse, it {is muc!
more likely that only a portion of the larg
unit will actually have the code whic!
performs the needed function for the nei
system. Then it becomes necessary to unnest
the code before reuse is possible. Thi:
unnesting is very labor intensive.

under development in the SEL has examinec
this project’s code for reuse and has founc
that it could use as much as 40% of the
original code. However, it was necessary tc
unnest all of this code before reuse. This
use of library units would have enabled the
second project to reuse the code directly.

2.3 "Call- through“ units are not an
efficient way to implement an object-
oriented design.

"Call-throughs® are procedures whose
only function is to call another routine.
These were used to group appropriate modules
exactly as they were represented in the
design so that a physical module of code was
created for every object in the design.
Thus, when objects were nested inside
objects, a "call-through" was used to get to
the inner object. Implementation of "call-
through™ units could be accomplished using
either nested or library units. This
practice resuited in additional code which
increased the system size and testing
complexity. This unneccessary code could
have been eliminated if some of the objects
in the design were left as logical objects,
rather than coding every object in the
design to preserve the exact design
structure.

|

o W s 1

i

1
1

[

€ i

L i

Wil

M "

L

2.4 An abstracf data type analysis

should be incorporated into the design
process to control types.

Since the Ada team was not previously
experienced in Ada, it took time to get
accustomed to the strong typing of Ada. The
tendency was to create too many types. A
type would be created with a strict range
for a particular portion of the application.
Then other areas of the application would
need a similar type, but the original one
would be too restrictive. So another type

‘was created, along with a corresponding set

of operations. Some of the difficulty with
this method of typing began to emerge during
critical design,—.where . interface problems
developed due to typing differences.

Multiple types also increased the
difficulty of testing modules. Test drivers
needed to be larger to handle multiple types
and were often coded as large "case"
statements in order to provide a testing
capability for each type.

A recommendation for future Ada
developments is to incorporate an abstract
data type analysis into the design process
to control the generation of types. A more
general new type would be defined, then many
subtypes of that type could be used in
various sections of the application. This
type analysis would provide the following
advantages: 1) operations would be reused,
2) there would be fewer main types to
manage, and 3) families of types would be
developed that would inherit properties from
each other.

SUMMARY

In spite of a lack of experience in Ada
at the beginning of the project, the Ada
team was able to develop a very suitable
dynamics simulator in Ada which meets the
requirements originally developed for the
FORTRAN development effort. The overall cost
of the projects appears to be similar and
early indications of reuse potential in the
Ada project are very encouraging. Most of
the problems encountered by the Ada team are
surmountable. Many are either caused by a
lack of experience with Ada or an immaturity
of the tools. Both of these problems will be
resolved in time.

There are still many unanswered

questions to be considered on this project--
for example, nothing at all has been

5207

mentioned about maintainability, relfabil{t
or performance. It is still too early t
look at these results on this project, but
research efforts are continuing on thi
project and several other Ada project in th
SEL. Hopefully, these efforts will provid
even more answers about the use Ada in th
future.

REFERENCES

1. Agresti, W., Church, V., Card, D., et
al. "Designing with Ada for Satellit
Simulation: A Case Study,” Proceeding
of lst Annual Symposium on Ad
Applications for NASA Space Station
Houston, Texas, June 1986.

2. Brophy, C. and Godfrey, S.,et. al
"tessons Learned in the Implementatio:
Phase of a Large Ada Project,
Proceedings of the Washington Ad
Technical Conference, March 1988.

3. Goddard Space Flight Center Ada User’:
Group. Ada Style Guide (Version 1.1)
Goddard Space Flight Center document
SEL-87-002, June 1987.

4. Godfrey, S., and Brophy, C. Assessin
the Ada Design Process and It:
Implications: A Case Study, Goddar
Space Flight Center document, SEL-87-
004, July 1987.

5. McGarry, F., Page, G., et. al.
Recommended Approach to Softwart
Development, Goddard Space Flight
Center document, SEL-81-205; April
1983. '

6. McGarry, F., and Nelson, R. Ar
Experiment with Ada-The GRO Dynamics
Simulator, Goddard Space Flight Center,
April 1985.

7. Murphy, R. and Stark, M. Ada Training
Evaluation and Recommendations, Goddarc
Spoace Flight Center, October 1985.

8. Nelson, R. "NASA Ada Experiment--
Attitude Dynamics Simulator,’
Proceedings of Washington Ad:
Symposium, March, 1986.

9. Seidewitz, E. and Stark, M. "Towards a

General Object Oriented Software
Development Methodology," Proceedings of
Ist International Conference on Ada
Applications for the Space Station, June
1986. o e

10. Seidewitz, E. and Stark, M. General

object Oriented Software Development,
Goddard Space Flight Center document, SEL-
86-002, August 1986.

11. Stark, M. and Seidewitz, E. "Towards a
General Object Oriented Ada Lifecycle,"
Proceedings of Joint Conference on Ada
Tech/Washington Ada Symposium, March 1986.

5207

i

@« .

Wi

:
.li

(11—l ¥

il

]l

GENERAL OBJECT-ORIENTED SOFTWARE DEVELOPMENT WITH ADA: A LIFE CYCLE APPROACH
CASE Technology Conference
April 1988

Ed Seidewitz
Code 554 / Flight Dynamics Analysis Branch

Goddard Space Flight Center
Greenbelt MD 20771
(301) 286-7631

Abstract

The effective use of Ada requires the adoption of
" modern software-engineering techniques such as
object-oriented methodologies. @A Goddard Space
Flight Center Software Engineering Laboratory Ada
pilot project has provided an opportunity for studying
object-oriented design in Ada. The project involves
the development of a simulation system in Ada in
parallel with a similar FORTRAN development. As
part of the project, the Ada development team
trained and evaluated object-oriented and process-
oriented design methodologies for Ada.

In object-oriented software engineering, the software
developer attempts to model entities in the problem
domain and how they interact. Most previous work
on object-oriented methods has concentrated on using
object-oriented ideas in software design and
implementation. However, we have also found that
object-oriented concepts can be used advantageously
throughout the entire Ada software life-cycle. This
paper provides a distillation of our experiences with
object-oriented software development. It considers
the use of entity-relationship and process/data-flow
techniques for an object-oriented specification which
leads smoothly into our design and implementation
methods, as well as an object-oriented approach to
reusability in Ada.

1. Introduction

Increased productivity and reliability from using Ada
must come from innovative application of the non-
traditional features of the language. However, past
experience has shown that traditional development
methodologies result in Ada systems that "look like a
FORTRAN design" (see, for example, [Basili 83]).
Object-oriented techniques provide an alternative

5207

approach to effective use of Ada. As the name
indicates, the primary modules of an object-oriented
design are objects rather than traditional functional
procedures. Whereas a procedure models an action,
an object models some entity in the problem domain,
encapsulating both data about that entity and
operations on that data. Ada is especially suited to
this type of design because its package facility
directly supports the construction of objects.

The Goddard Space Flight Center Software -
Engineering Laboratory is currently involved in an
Ada pilot project to develop a system of about 60,000
lines (20,000 statements) [Nelson 86, McGarry 88].
This project has provided an opportunity to explore
object-oriented software development methods for
Ada. The pilot system, known as "GRODY", is an
attitude dynamics simulator for the Gamma Ray
Observatory (GRQO) spacecraft and is based on the
same requirements as a FORTRAN system being
developed in parallel.

The GRODY team was initially trained both in the
Ada language and in Ada-oriented design
methodologies. The team specifically studied the
methodology promoted by Grady Booch [Booch 83]
and the PAMELA™ methodology of George Cherry
[Cherry 85]. Following this, during a training
exercise, the team also began synthesizing a more
general approach to object-oriented design. At an
early stage of the GRODY development effort, the
team produced high-level designs for GRODY using
each of these methodologies. Section 2 summarizes
the comparison of methodologies made by the
GRODY team.

PAMELA is a registered trademark of George W. Cherry.

General Object-Oriented Software Development with Ada

Unfortunately, the system requirements given to our
team were highly biased by past FORTRAN designs
and implementations of similar systems. Therefore
we began by recasting the requirements in a more
language-independent way using the "Composite
Specification Model" [Agresti 84, Agresti 87]. This
method involves the use of state transition and entity-
relationship techniques as well as more traditional
data flow diagrams. We then designed the system to
meet this specification, using object-oriented
principles. The resulting design is, we believe, an
improvement over the previous FORTRAN designs
[Agresti 86]. The system is currently in final system
testing. .

Previous work by the present authors has
concentrated on using object-oriented ideas in
software design and implementation. This work

resulted in a design method which synthesizes the best
methods studied during the GRODY project
[Seidewitz 86a, Seidewitz 86b]. However, we have
found that object-oriented concepts can be used
advantageously throughout the entire Ada software
life-cycle [Stark 87]. Section 3 provides a distillation
of our experience with GRODY and other Ada
projects into an evolving life-cycle methodology.

2. Comparison of Methodologies

This section presents a comparison of design
approaches to the GRO dynamics simulator, including
the traditional functional approach_used for the
FORTRAN version, the Booch methodology,
PAMELA and the general methodology developed by
the team itself. It should be noted that the GRODY
team was_ trained in the Booch and PAMELA
methodologies in early 1985. Since then, both
methodologies have evolved considerably, in many
cases addressing in different ways the very issues that
led us to develop our methodology. Nevertheless, as
background motivation for the direction taken by the
GRODY team, the comparison in this section is in
terms of the 1985 versions of the methodologies.

2.1 Functional Design

The design of the FORTRAN version of the
simulator is functionally-oriented. This design has a
strong heritage in previous simulator and ground
support systems. It consists of three major subsystems
which interact as shown in figure |. The "TRUTH

MODEL" subsystem includes models of the spacecraft

hardware, the external environment and the attitude
dynamics; that is, the "real world"” as opposed to the
spacecraft control system. The SIMULATION
CONTROL subsystem alternatively activates the
SPACECRAFT CONTROL and TRUTH MODEL
subsystems in a cyclic fashion. Each subsystem
consists of a single driver subroutine which calls on a
hierarchy of lower-level subroutines to perform the
functions of the subsystem when activated by
SIMULATION CONTROL. Data flow between
subsystems, as well as system parameterization, is
entirely though a set of global COMMON areas.

SIMULATION
CONTROL

]

GLOBAL

. SPACECRAFT

COMMON
<+—o0 DATA <——0 CONTROL
. FIGURE | FORTRAN S‘in;ﬁ'lart;)rr Functional Design

The strengths of this functional design lay in its
relatively simple structure and direct implementation
in FORTRAN. However, its main drawback is the
complete lack of encapsulation of global data. The
only restrictions on which code may access which
global data are enforced by programmer discipline.
This can lead, intentionally or not, to illicit
corruption of global data by code in one part of the
system which is unexpected by another part of the
system. Further, most simulation parameters are
hard-coded into the global common area, making the
user interface for the system hard to modify and
impossible to generalize.

i 4q al wi

i

0 Eli

Wi 00 @GO WG owm

General Object-Oriented Software Development with Ada

22B ¥ hodol

Grady Booch is, perhaps, the most influential
advocate of object-oriented design in the Ada
community [Booch 86b, Booch 87]. As learned by the
GRODY team, Booch's methodology derives a design
from a textual specification or informal design
[Booch 83], an approach adopted from Abbott
[Abbott 83). The technique is to underline all the
nouns and verbs in the specification. The objects in
the design derive from the nouns; object operations
derive from the verbs. Obviously, some judgment
must be used to disregard irrelevant nouns and verbs
and to translate the remaining concepts into design
objects. Once the objects have been identified, the
design can then be represented diagrammatically
using a notation which shows the dependencies
between Ada packages and tasks which implement the
objects. Figure 2 shows such a diagrammatic top-
level design for GRODY.

" FIGURE 2 Object-Oriented Simulator Design
(Booch Methodology)

The Booch design methodology contains all the basic
framework of the object-oriented approach.
However, application of this methodology to GRODY
indicated that it was not readily applicable to sizable
systems. The team found the graphical notation clear
but not detailed or rigorous enough. Further, Booch

gives no explicit method for diagramming a

hierarchical decomposition of objects, which is
needed for any sizable system. Booch’s notation does
not, therefore, seem to be a complete design notation.

5207

Note, however, that in more recent work Booch has
extended the scope of the notation to address some of
these shortcomings [Booch 87].

A second difficulty of Booch’s methodology is in the
technique for deriving the design from the
specification text. This works well when the
specification can be written concisely in a few
paragraphs. However, when the system requirements
are large, as with GRODY, this can be difficult. In
addition, any attempt to use such a technique directly
on a requirements document such as ours is doomed
to failure due to the sheer size and complexity of the
document. Realizing such drawbacks, Booch no
longer advocates the use of this textual method,
which was never actually intended for large systems
development [Booch 86b]. Instead, he derives an
object-oriented design from a data flow diagram
based specification [Booch 86a, Booch 87]. However,
from the published examples it is still unclear how to
systematically apply this method to realistic systems.

2.3 PAMELA

The second methodology considered by the GRODY
team was the Process Abstraction Method for

_Embedded Large Applications (PAMELA) developed

by George Cherry [Cherry 85, Cherry 86]. PAMELA
is oriented toward real-time and embedded systems.
PAMELA is process-oriented, so a PAMELA design
consists of a set of interacting concurrent processes.
A well designed process is effectively a concurrent
object, thus PAMELA is object-oriented in a general
way.

PAMELA uses a powerful graphical notation without
many of the drawbacks found in Booch’s notation
[Cherry 86). During the PAMELA design processes,
the designer successively decomposes processes into
concurrent subprocesses until he reaches the level of
primitive single-thread processes. The GRODY team
found that PAMELA provides fairly explicit
heuristics for constructing good processes. The
designer uses these hints to construct the top-level
processes from the system specification. The designer
then recursively decomposes each non-primitive
processes until only primitive processes remain. The
primitive processes can then be coded as Ada tasks
with a single thread of control. Non-primitive
processes are simply packages of lower level processes

and thus contain multiple threads of control. Figure

3 shows the top levels of a PAMELA design for
GRODY.

ORIGINAL PAGE IS
OF POOR QUALITY

General Object-Oriented Software Dévelopmem with Ada

GOl
e Pty ¢
BRARANON ONSA 1
-

i o
oo
PaA 08 OPF) -
0 o8 ot . 090 DATA
L) PARAM DATA

FIGURE 3 PAMELA Simulator Design

PAMELA’s heuristics can be very effective when
designing a real-time system that is heavily driven by
external asynchronous actions. In other cases,
however, they require considerable interpretation to
be applicable. Although parts of GRODY might
conceptually be concurrent (becausngRODY
simulates actions that happen in parallel in the real
world), there is no requirement for concurrency in
the simulation of these actions because GRODY does
not have to interface with any active external entity
(except the user). In addition, since GRODY runs on
a sequential machine, the overhead of Ada tasking
and rendezvous could greatly degrade the time
performance of the system. Thus, one interpretation
of PAMELA’s principles might leave very large
sections of GRODY as primitive single-thread
processes, with only a few concurrent objegts in the
entire design. To proceed further in the
decomposition, the designer has to rely more on
intuition about what makes a good object and rely
less on the methodology.

In fact, at the time that the GRODY team was using
PAMELA, it provided no support for the
decomposition and design of anything below the level
of the primitive process, an Ada task [Cherry 85].
Since then, Cherry has added several concepts to the

methodology, including the use of abstract data types
[Cherry 86].. Recently he has introduced a major

5207

update of PAMELA known as "PAMELA 2" which is
now explicitly object-oriented [Cherry 88]. In fact,
PAMELA now stands for "Pictorial Ada Method for
Every Large Application.” It is still to early,
however, to evaluate the generality of PAMELA 2 as

an object-oriented methodology.

2] ject-Orient velopmen

As a result of the above experiences, the GRODY
team developed its own object-oriented methodology
which attempts to capture the best points of the
object-oriented approaches studied by the team as
well as traditional structured methodologies
[Seidewitz 86a, Seidewitz 86b, Stark 87]. It is
designed to be quite general, giving the designer the
flexibility to explore design alternatives easily. It is
also based on principles that guide the designer in
constructing good object-oriented designs. This
methodology was used to develop the complete
detailed design for GRODY.

This general object-oriented development ("GOOD").

methodology is based on general principles of
abstraction, information hiding and design hierarchy
discussed in the next section. These principles are
less explicit than Booch's methodology or PAMELA,
but they do provide a firm paradigm for generating
ting an object-oriented design. Indeed, as

above, the team found the Booch and
PAMELA design construction techniques restrictive,
often necessitating the designer to rely on intuition
for object-oriented design. The GOOD methodology
is an attempt to codify this intuition into a basic set
of principles that provide guidance while leaving the
designer the flexxbxhty to explore various design
approaches.

In addition, we have also considered, independently
of Booch, the transition from structured analysis
[DeMarco 79] to object-oriented design in the context
of the GOOD methodology, developing a technique
known as abstraction analysis [Seidewitz 86a,
Seidewitz 86b]. This technique is analogous to
transform and transaction analysis used in structured
design {Yourdon 78]. However, proceeding into
object-oriented design from a structured analysis, by
whatever means, requires an "extraction" of problem
domain entities from traditional data flow diagrams.
From an object-oriented viewpoint, it seems
appropriate to instead begm a specification effort by
identifying the entities in a problem domain and their
interrelationships. Study is continuing on including

ORIGINAL PAGE IS
OF POCR QUALITY

General Object-Oriented Software Development with Ada

such object-oriented system specification techniques
in the GOOD methodology and on applying object-
oriented principles throughout the Ada life cycle
[Stark 87]. Section 3 will discuss this in more detail.

Figure 4 shows the actual design of the main part of
GRODY. The object diagram notation
[Seidewitz 86b] used in figure 4 shows the
dependencies between the various objects which make
up a system design, in a manner similar to Booch’s
diagrams. However, the object diagram notation also
explicitly includes the idea of leveled composition of
objects, like the PAMELA process graph notation.
Moreover, as will be discussed in' more detail in
section 3, the designer may use object diagrams to
express the design from the highest levels all the way
down to the procedural level. (This capability has
also been added to PAMELA 2 [Cherry 88].)

Since GRODY was derived from the same basic
requirements as the FORTRAN design, there are
similarities in the designs of the two systems.
However, there are also some fundamental differences
in the GRODY design that can be traced to the
object-oriented methodology. For example, in
GRODY the TRUTH MODEL is effectively passive,
with the SPACECRAFT CONTROL calling on
operations as needed to obtain sensor data and
activate actuators. All sensor and command data is
passed using these operations. This design approach
was encouraged by viewing the TRUTH MODEL as
an object with multiple operations rather than as a
functional subsystem with a single driver.

The simulation timing of GRODY is also different
from the FORTRAN design. The object-oriented
methodology led to consideration of a "TIMER"
object in GRODY which provides an abstraction of
the simulation time. This utility object provides a
common time reference for the SPACECRAFT
CONTROL and TRUTH MODEL separate from the
SIMULATION CONTROL loop. Unlike the
FORTRAN design, in GRODY the "cycle times" of
the SPACECRAFT CONTROL and TRUTH MODEL
are not the same. The GRODY team chose to
faithfully model, in the SPACECRAFT CONTROL
abstraction, the timing of the actual spacecraft control
software, which is not under user control. However,
GRODY allows the simulation user to set the cycle
time for the TRUTH MODEL over a fairly wide
range, to allow the user to trade-off speed and
accuracy as desired.

5207

SIMULATION
CONTROL

SPACECRAFT
CONTROL

A

PARAMETER

DATABASE DATABAS!

FIGURE 4 Object-Oriented Simulator Design
(GOOD Methodology)

Finally, the PARAMETER DATABASE and
GROUND COMMAND DATABASE objects
encapsulate user settable parameters for the
simulation. Similar data is contained in COMMON
blocks in the FORTRAN design. This encapsulation
of "global" data is typical of object-oriented designs.
It provides both increased protection of the data
encapsulated and increased opportunity for reuse. For
example, the simulation parameters in the FORTRAN
design are COMMON block parameters which must
be hard-coded into the user interface code. (For
simplicity the user interface modules have ‘not been
included in figure 4.) In the GRODY design,
simulation parameters are identified by enumeration
constants, which allows the user interface displays to
be parameterized by external data files. This should
greatly increase the reusability of the user interface.

The differences discussed above could probably have
been incorporated into the FORTRAN design.
However, it was largely the influence of the object-
oriented approach which lead to their consideration
for GRODY when they had not been considered in
several previous designs of simulators for FORTRAN.
Considerations of encapsulation and reusability
indicate that the GRODY design may be "better” than
the FORTRAN design. This is, of course, the goal of
object-oriented methods. However, the true test of
the merits of the GRODY design will only come from
continuing studies of the comparative maintainability
of the FORTRAN and Ada simulators.

General Object-Oriented Software Development with Ada

In terms of the methodology itself, the team found
the object diagram notation extremely useful for
discussing the design during development. Further,
the notation provided complete documentation of the
design and was tailored specifically towards Ada. This
made the transition to coding very smooth, and
allowed the documentation to be readily updated as
coding proceeded. By the end of coding, there were
no major changes in the design and most changes that
did occur were additions rather than alterations.

The object diagram notation evolved considerably
during the GRODY project in response to continuing
experience with its use. The lack of a specific
methodology at the start of the GRODY project was a
problem for the team, as was the continuing evolution
of the methodology over the duration of the project.
Further, the fact that managers were not familiar
with the new methodology made the use of object
diagrams difficult at reviews. Another problem was
that the detail of the object diagrams and the
emphasis on keeping the documentation up-to-date

required a great deal of effort to maintain a rather -

large design notebook. The team clearly saw the great
need for automated tools to support the methodology
in this area. Consideration has also been given to
extend the object diagram notation to better cover
such topics as generics, abstract data types and large
system components.

3. The GOOD Methodology

Section 2 described the background motivation of the
GRODY team in developing the GOOD methodology
and applying it to the full GRODY design. The
experience with the Composite Specification Model
and object-oriented design on GRODY, as well as
experience on other Ada projects, has led to the
continuing evolution of a comprehensive, integrated,
object-oriented approach to software development,
encompassing all phases of the software life cycle.
This section provides an overview of the current
GOOD life cycle approach.

| Entities and Relationshi

The modules of an object-oriented design are
intended to primarily represent problem domain
entities. From an object-oriented viewpoint, it seems
appropriate to begin a software specification effort by
identifying the entities in a problem domain and their
interrelationships. Entity-relationships and data flow

5207

techniques can then complement each other, the
former delineating the static structure problem
domain and the latter defining the dynamic function
of a system. This is similar to the "contextual® and
"functional® views of the Composite Specification
Model [Agresti 84, Agresti 87]. A close relation to the
specification approach discussed here is described in

some detail in [Bailin 88].

An entity is some individual item of interest in the
problem domain. For example, consider the
specification. of GRODY. Several problem domain
entities immediately come to mind: the spacecraft
structure, sensors and thrusters on the spacecraft, the
environment, etc. An entity is described in terms of
the relationships into which it enters other objects. A
spacecraft might be in a certain orientation, have
certain thrusters, etc. Entities can also have
attributes, such as spacecraft mass, which are data
items describing the intrinsic properties of the entity.

To model the structure ‘of the problem domain
requires the identification of entity types which are
groups of entities with the same types of attributes
and relationships. For example, we may define a
SPACECRAFT STRUCTURE entity type with
SPACECRAFT MASS and DRAG COEFFICIENT
attributes. All SPACECRAFT STRUCTURE entities
have these attributes, but different individual entities
have different specific values for the attributes.

A problem domain model must also include a
specification of all possible relationships between
various types of entities. These relationships may
themselves have attributes and enter into other
relationships. For example, the ATTITUDE STATE
of a spacecraft describes its current orientation
relative to inertial space and its current rotational
motion. The ATTITUDE STATE is effectively a
relationship between the spacecraft, the environment
and the effect of any thruster firings used to reorient
the spacecraft. This relationship has such attributes
as the current spacecraft orientation and the

spacecraft angular rotation rates.

The entity-relationship diagram (ERD) is a2 common
graphical tool for entity-oriented specification
[Chen 76]. Figure 5 shows an ERD for the GRODY
problem domain. The notation for this diagram is
based on [Ward 85]. Complex relationships such as
ATTITUDE STATE are shown as associative entities
on ERDs such as figure 5. Associative entities can be
identified on an ERD by being.connected to a

Wi |

i] il | TN H

1T |

!

ORIGINAL PAGE IS
OF POOR QUALITY

General Object-Oriented Software Development with Ada

relationship symbol by an arrow. Associative entities
are "objectivizations" of relationships which may have
attributes and enter into other relationships.

» SPACECRAFT MASS
« DRAG COEFFICIENT

o ALIGWSEMT
SENSORS [+ CAUBRATION
PARAMETERS
* SUN NEASUNEMENT
. ?m uuguuggalv
SPACECAAFT
CONTROL MEASUREMENT
o COMMANOED
ATTITUOE
CONTROL e ATNTUOE| ATTITUDE
SIGNAL iy STATE
THRUSTERS °,.°°"”o'““’ t ENVIRONMENT
—
» ALKINMENT ATHOSPHENC DENSITY
* THRUSY GRAVITY CONSTANT
SUN POSITION
EARTH POSITION
LEGEND
entiry Tvee [
STRUCTURE
aeTionswr
—>

ASSOCIATIVE
ENTITY

ATTRIBUTE »

FIGURE 5 Attitude Dynamics Entity-Relationship
Diagram

Figure 5 shows only a small part of the example
problem domain. It would grow as additional entities
and relationships are added to describe additional
parts of the problem domain. As the specification
grows, a complete ERD can quickly become
cumbersome. It is possible to "level® ERDS showing
complex entities on high-level diagrams which enter
into composite relationships. These are then broken
down in lower-level diagrams. An extended data
dictionary notation is also useful as a textual
representation of entity type and relationship
definitions. In addition, the data dictionary provides
a common basis for data definition between the static
and the dynamic views of the problem domain.

3.2 Processes and Data Flow

ERDs show all possible relationships between
different types of entities. They do not show the
actual relationships between specific entities at
specific points in time, nor how these actual
relationships change over time. Data flow techniques,

5207

however, provide exactly this dynamic view.
Traditional data flow diagrams (DFDs) show the flow
of data between functional transformations. We will,
instead, diagram the flow of data between processes
which represent the dynamic view of one or more
entities in the problem domain. A process is
effectively a state machine which accepts input
stimuli, reacts to it and produces output stimuli,
possibly modifying some internal state data. It has no
"operations” as such, only stimuli and responses.
These stimuli may be either in the form of data flow
or pure control signals.

To construct a dynamics data flow model, one needs
to identify those active entities which have associated
processes. For each relationship in the static entity-
relationship model, we choose one of the related
entity types to be active. This entity type has an
associated process which is charged with maintaining
the state of the relationship in response to internal
and external stimuli. Note that an entity type may be
active relative to one relationship and passive relative
to another, and that associative entities may be active -
or passive.

For example, consider a simplified attitude dynamics
simulation system similar to GRODY. The attitude of
a spacecraft is its orientation relative to inertial space,
and an attitude dynamics simulator models the
rotational motion of the spacecraft in response to
external disturbances and the spacecraft control
system. Figure 5 describes the problem domain for
such a system. The active entities in this case interact
in a control loop outlined in figure 6. All the
processes shown on figure 6 are associated with active
entities on figure 5. A data item flowing on a
diagram such as figure 6 may be a passive entity, an
attribute or any other composite data item or data
element defined in the data dictionary.

The dynamic model must also provide a specification
for each individual process. This specification should
include a textual description of the object as well as a
listing of all inputs and outputs. The process
specification also provides a place to include "non-
functional® requirements such as timing and accuracy
constraints. However, the main point of a process

" specification is to detail the function of the process.

This can be in the form of structured English, a state
transition diagram or some other appropriate notation,
such as differential equations for the time evolution
of the spacecraft attitude.

General Object-Oriented Software Development with Ada

ATTITUDE
STATE

ENVIRONMENT SPACECRAFT

CONTROL

THRUSTER Jsﬁn
TORQUE ; COMMAND

FIGURE 6 Attitude Dynamics Data Flow Diagram

The function of a process can also be given by a
lower-level data flow diagram. Decomposition can
continue recursively on all diagrams until all processes
have been decomposed into primitive functions and
states. This results in a leveling similar to the
leveling of traditional DFDs. However, unlike DFDs,
each object at each level of a process-data-flow
diagram specification has a complete process
specification. Each process must also be associated a
reasonable problem domain entity independently of
its decomposition.
iect Identification

The intent of an object is to represent a problem
domain entity and any associated process. The
concept of abstraction deals with how an object
presents this representation to other objects
[Booch 86b, Dijkstra 68]. Ideally, the objects in a
design should directly reflect the problem domain
entities identified during system specification.
However, various design considerations may require
splitting or grouping of objects and there will almost
always be additional objects in a design - to handle
"executive” and "utility" functions. Thus there is a
spectrum of levels of abstraction of objects in a
design, from objects which closely model problem
domain entities to objects which really have no reason
for existence [Seidewitz 86b). The following are some
points in this scale, from strongest to weakest:

5207

Entity Abstraction - An object represents a useful
model of a problem domain entity or class of entities.

i - An object provides a
generalized set of operations which all perform
similar or related functions (this is similar to the idea

of a "utility” object in [Booch 87]).

Subsystem Abstraction - An object groups together a

set of objects and operations which are all related to a
specific part of a larger system (this is similar to the
"subsystem" concept in [Booch 87]).

The stronger the abstraction of an object, the more
details are suppressed by the absfract concept. The
principle of information hiding states that such details
should be kept secret from other objects [Booch 87,
Parnas 79], so as to better preserve the abstraction
modeled by the object.

3.4 Design Hierarchies

The principles of abstraction and information hiding
provide the main guides for creating "good” objects.
These objects must then be connected together to
form an object-oriented design. This design is
represented using the graphical object diagram
notation [Seidewitz 86b].

The construction of an object-diagram-based design
is mediated by consideration of two orthogonal
hierarchies in software system designs [Rajlich 85].
The composition hierarchy deals with the composition
of larger objects from smaller component objects. The
seniority hierarchy deals with the organization of a set
of objects into "layers”. Each layer defines a virtual
language extension which provides services to senior
layers [Dijkstra 68]. A major strength of object
diagrams is that they can distinctly represent these
hierarchies.

The composition hierarchy is directly expressed by
leveling object diagrams (see figure 7). At its top

_level, any complete system may be represented by a

single object which interacts with external objects.
Beginning at this system level, each object can then
be refined into component objects on a lower-level
object diagram, designed to meet the specification for
the object. The result is a leveled set of object
diagrams which completely describe the structure of a
system. At the lowest level, objects are completely
decomposed into primitive objects such as procedures,
tasks and internal state data stores. At higher levels,

| Al WL

m

0 [[LI L] I 1

b

General Object-Oriented Software Development with Ada

object diagram leveling can be used in a manner
similar to Booch’s "subsystems” [Booch 87].

COMPONENTS

FIGURE 7 Composition Hierarchy

The seniority' hierarchy is expressed by the topology
of connections on a single object diagram (see figure
8). An arrow between objects indicates that one
object calls one or more of the operations provided by
another object. Any layer in a seniority hierarchy
can call on any operation in junior layers, but never
any operation in a senior layer. Thus, all cyclic
relationships between objects must be contained
within a virtual language layer. Object diagrams are
drawn with the seniority hierarchy shown vertically.
Each senior object can be designed as if the
operations provided by junior layers were "primitive
operations” in an extended language. Each virtual
language layer will generally contain several objects,
each designed according to the principles of
abstraction and information hiding.

3.5 System Design

The main advantage of a seniority hierarchy is that it
reduces the coupling between objects. This is because
all objects in one virtual language layer need to know
nothing about senior layers. Further, the
centralization of the procedural and data flow control
in senior objects can make a system easier to
understand and modify.

5207

VIRTUAL |
-------------------------- p-eesgemr=r==== LANGUAGE
INTERFACE 1

VIRTUAL
..................................... LANGUAGE
INTERFACE 2

S

FIGURE 8 Seniority Hierarchy

However, this very centralization can cause a messy
bottleneck. In such cases, the complexity of senior
levels can be traded off against the coupling of junior
levels. The important point is that the strength of the
seniority hierarchy in a design can be chosen from a
spectrum of possibilities, with the best design
generally lying between the extremes. This gives the
designer great power and flexibility in adapting
system designs to specific applications.

Figure 9 shows one possible preliminary design for
the ATTITUDE SIMULATOR. For simplicity, the
sensors and thrusters are represented by a single
"SPACECRAFT HARDWARE" object in figure 9.
Note that, by convention, the arrow labeled "RUN" is
the initial invocation of the entire system. In
preliminary design diagrams such as figure 4, it is
sometimes convenient to show what data flows along
certain control arrows, much in the manner of
structure charts [Yourdon 78] or "Buhr charts”
[Buhr 84]. These annotations will not appear on the
final object diagrams.

In figure 9, the junior level components do not
interact directly. All data flow between junior level
objects must pass through the senior object, though
each object still receives and produces all necessary
data (for simplicity not all data flow is shown in
figure 9). This design is somewhat like an object-
oriented version of the structured designs of Yourdon
and Constantine [Yourdon 78].

ORIGINAL PAGE IS
OF PCOR QUALITY

General Object-Oriented Software Development with Ada

AUN
arnTupe| HREMLTS
L IMULATOR———
THRUSTER GROUND
ronoV Wu
[-]
=¥ °
ATTITUDE 2 > TELEMETRY
STATE 2 g 3
ES $
A
ATTITUDE SPACECRAFT SPACECRAFT
DYNAMICS HARDWARE CONTROL
—_J e
LEGEND

DATA FLOW O—P
CONTROL FLOW ~e——i

FIGURE 9 Centralized Design

We can remove the data flow control from the senior
object and let the junior objects pass data directly
between themselves, using operations within the
virtual language layer (see figure 10). The senior
object has been reduced to simply activating various
operations in the virtual machine layer, with very
little data flow.

RESULTS
SIMULATION_O——%
CONTROL

ATTITUDE
suV TELEMETRY

THRUSTER)

TORQUE
<+——o0 | 0
SPACECRAF

ATTITUDE
HARDWARE

DYNAMICS
ATTITUDE

STATE

GROUND
COMMAND

FIGURE 10 Design with Decentralized Data Flow

5207

10

We can even remove the senior object completely by
distributing control among the junior level objects
(see figure 11). The splitting of the RUN control
arrow in figure 1! means that the three objects are
activated simultaneously and that they run
concurrently. The seniority hierarchy has collapsed,
leaving 2 homologous or non-hierarchical design
{Yourdon 78] (no semiority hie-archy, that is; the
composition hierarchy still remains).

A design which is decentralized like figure 11 at all

composition levels is very similar to what would be
produced by the PAMELA methodology [Cherry 86).
In fact, it should be possible to apply PAMELA
design criteria to the upper levels of an object
diagram based design of a highly ¢oncurrent system.
All concurrent objects would then be composed, at a
certain level, of objects representing certain process
"idioms" [Cherry 86]. Below this level concurrency
would generally no longer be advantageous.

AUN

THRUSTER
TORGUE

THRUSTER

COMMANg

SPACECRAFT

ATTITUDE SPACECRAF

DYNAMICS HARDWARE CONTROL
1 e
ATTITUDE SENSOR
STATE DATA
ATTITUDE
STATE TELEMETHY I
GROU. D
COMMA.: &
[2

FIGURE 11 Decentralized Désign

To complete the design, we need to add a virtual
language layer of utility objects which preserve the
level of abstraction of the problem domain entities. In
the case of the ATTITUDE SIMULATOR these
objects might include YVECTOR, MATRIX,
GROUND COMMAND and simulation
PARAMETER types. Figure 12 shows how these
objects might be added to the simulator design of
Figure 10.

i

m i

Hi| Al

T

il il

[[

i |

ONGIVAL PAGE is
OF POOR QUALITY

General Object-Oriented Software Development with Ada

Figure 12 gives one complete level of the design of
the ATTTTUDE SIMULATOR. Note that figure 12
does not include the data flow arrows used in earlier
figures. When there are several control paths on a
complicated object diagram, it rapidly becomes
cumbersome to show data flows. Instead, object
descriptions for each object on a diagram provide
details of the data flow.

An object description includes a list of all operations
provided by an object and, for each arrow leaving the
object, a list of operations used from another object.
We can identify the operations provided and used by
each object in terms of the specified data flow and
the designed control flow. The object description can
be produced by matching data flows to operations.
For example, the description for the ATTITUDE
DYNAMICS object in figure 12 might be:

Provides:

procedure Initialize;

procedure Integrate (For_Duration: in DURATION);
procedure Apply (Torque: in VECTOR);

function Current__Attitude return ATTITUDE;
function Current__Angular_Velocity

return VECTOR;

Uses:

5.0 LINEAR ALGEBRA
Add (Vector)
Dot
Multiply (Scalar)
Multiply (Matrix)

6.0 PARAMETER DATABASE
Get

We could next proceed to refine the objects used in
figure 12 and recursively construct lower level object
diagrams. These lower level designs must meet the
functionality of the system specification and provide
the operations listed in the object description. The
design process continues recursively until the entire
system is designed and ail objects are completely
decomposed.

The GRODY design of figure 4 is basically the same
as the example design of figure 12. However, the
GRODY team chose to simplify the design by
combining the ATTITUDE DYNAMICS and
SPACECRAFT HARDWARE objects into a single
TRUTH MODEL subsystem object, similar to the
corresponding subsystem in the FORTRAN design.

5207

Further, in GRODY, the LINEAR ALGEBRA
functions are part of a UTILITIES module not shown
in figure 4.

4
SPACECRAFT
CONTROL

—_J

A

L}
PARAMETER
DATABASE

LINEAR
ALGEBRA

FIGURE 12 Attitude Dynamics Simulator Design

3.5 Implementation

The transition from an object diagram to Ada is
straightforward. Package specifications are derived
from the list of operations provided by an object. For
the ATTITUDE DYNAMICS object the package
specification is:

package Attitude_Dynamics is

subtype ATTITUDE is Linear_Algebra MATRIX;

procedure Initialize;
procedure Integrate

(For__Duration : in DURATION);
procedure- Apply

(Torque : in Linear__Algebra. VECTOR);

function Current__Attitude
return ATTITUDE;

function Current__Angular_ Velocity
return Linear_Algebra. VECTOR;

end Dynamics;

General Object-Oriented Software Development with Ada

The package specifications derived from the top level
object diagram can either be made library units or
placed in the declarative part of the top level Ada
procedure. For lower level object diagrams the
mapping is similar, with component package
specifications being nested in the package body of the
composite object. States are mapped into package
body variables. This direct mapping produces a highly
nested program structure. Alternatively, some or all
of these packages can be made library units or even
reused from an existing library. However, this may
require additional packages to contain data types and
state variables used by two or more library units,
Nevertheless, experience has shown that, to promote
reusability and reduce the compilation burden, it is
best to avoid nesting of code [Godfrey 87], though it
is important to retain leveling in the design.

The process of transforming object diagrams to Ada
is followed down all the object diagram levels until
we reach the level of implementing individual
subprograms. Low-level subprogram§ can be designed
and implemented using traditional functional
techniques. They should generally be coded as
subunits,

rather than being embedded in package
bodies,

The clear definition of abstract interfaces in an
object-oriented design can also greatly simplify
testing. When testing an object, there is a well
defined "virtual language” of operations it requires
from objects at a junior level of abstraction, some of
which may be stubbed-out for initial testing. Further,
object-oriented composition encourages incremental
integration testing, since the "unit testing” of a
composite object really consists of "integration
testing” the component objects at a lower level of
abstraction.

3.7 Reuse

The concept of generic objects provides a powerful
tool for reusability. Generic parameters may be used
to cut the dependencies of a general object on other
specific objects, allowing the general object to be
reused in similar but different contexts. Consider,
for example, a general numeric integrator with the
following package specification:

5207

generic

type REAL is digits <o;— -
type STATE__VECT OR is
array (INTEGER range <>) of REAL;
with function State_Derivative
(T: DURATION; -- from reference time
X : STATE_VECTOR)
return STATE_ VECTOR;

package Generic Integrator is

procedure Integrate

(For__Duration : in DURATION);
function Current_State

return STATE VECT OR
procedure Initialize sy

end Generic_ Integrator;

This package provides the ability to numericaily

integrate a vector dxff'erentlal equation with an-

arbitrary state vector size. The "Integrate” procedure
can be implemented as a vector equation, or as a set
of individual real-valued functions. To implement it
as a single vector equation we will need the
operations provided by a LINEAR ALGEBRA object.
These operations can be incorporated in two ways.
One possibility is to make the operations needed into
generic formal parameters. Another is to have the
body of the integrator depend directly on LINEAR
ALGEBRA.

“Each of these methods has advantages and drawbacks.

Using generic formal subprograms enhances
reusability by making the component self-contained,
but if too many are needed the interface becomes
complex. Depending on LINEAR ALGEBRA within
the GENERIC INTEGRATOR makes a cleaner
interface, but couples the generic package to another
library unit, = The GRODY team has used both
methods. Figure 13 shows the composition of
GENERIC INTEGRATOR assuming the latter choice.

Figure 14 shows a use of the GENERIC
INTEGRATOR in the composition of the
ATTITUDE DYNAMICS object. The component
object ATTITUDE INTEGRATOR is an instantiation
of the GENERIC INTEGRATOR object. The generic
object is instantiated ' in figure 14 with the
ATTITUDE EQUATION subprogram as the generic
actual parameter. Most of the ATTITUDE
DYNAMICS operations are shown in figure 14 as

W L 1. i

| It

i

 [rif

Bii B W

mii

Kl

p—

General Object-Oriented Software Development with Ada

component procedures, represented by rectangles. The
"Integrate” operation, however, is directly inherited
from the ATTITUDE INTEGRATOR object.

L

CURRENT
STATE

INTEGRATE INITIALIZE

S .
o, v,

Ty -4
STATE INTEGRATOR
LINEAR DERIVATIVE STATE
ALGEBRA

LEGEND

OBJECT O
-
c—

PROCEDURE
STATE DATA
GENERIC FORMAL e
SUBPROGRAM Z--es?
CONTROL FLOW —b

DEPENDENCY WO ...,
CONTROL FLOW

Figure 13 Generic Inlégrator Object Composition

Ada features such as generic packages are useful
tools, but language features are not sufficient to
guarantee high levels of software reuse. What is also
needed is an approach to specifying and designing
reusable components. Using an object-oriented
approach is useful not because object-oriented design
is essential for reuse, but because the underlying
concepts are. These crucial concepts are abstraction,
information hiding, levels of virtual languages (often
called virtual "machines") and inheritance [Parnas 79,
Cox 86].

Smalltalk’s subclassing [Goldberg 83] provides an
elegant means of supporting inheritance. Ada does not
directly support inheritance, but the concept can be
simulated by using "call-throughs.” A call-through is
a subprogram that has little function other than to call
on another package’s subprogram. To simulate
inheritance when implementing the
Attitude_ Dynamics package the subprogram Integrate
would be respecified in the Attitude_Dynamics
package, with the subprogram body in
Attitude__Dynamics calling on the corresponding
operation from Attitude_ Integrator.

5207

b |

2.3 2.2
INITIALIZE APPLY

/i: .

-

P] ;{
ATTITUDE i
EQUATIONS |, i
‘\‘.‘ & -3"
", 2.8
‘% CURRENT
s 2.7 TORQUE
ENVIRONMENT

FIGURE 14 Attitude Dynamics Object Composition

This technique is clearly less elegant than Smalltalk
subclassing, but it also has advantages. First, Ada
allows inheritance from more than one object.
Second, Smalltalk forces the inheritance of all
operations and data. An operation can be overridden,
but not removed, from a class. The Ada specification
of the composite package gives the developer precise
control over which operations and data items are
visible or accessible. (See [Seidewitz 87] for a more
detailed discussion of Ada and the concept of
inheritance.)

4, Conclusion

The GRODY project has provided an extremely
valuable experience in the application of object-
oriented principles to a real system. This experience
guided the creation of the GOOD methodology which
is now being used on an -increasing number of
projects inside and outside of the Goddard Space
Flight Center. As with any pilot project, some of the
major products of GRODY are the lessons learned
along the way.

As part of the GRODY project, a detailed assessment
has been made of the team's experiences during
design [Godfrey 87]. At this time, however, most of
the observations must remain qualitative.
Nevertheless, it is clear that the GRODY design is
significantly different from previous FORTRAN
simulator designs [Agresti 86].

General Object-Oriented Software Devélopment with Ada

It also became clear during the GRODY project that
the GOOD methodology does not fit comfortably into
the traditional life cycle management model. At the
very least, the design phase should be extended and
design reviews should occur at different points in the
life cycle. The preliminary design review should
occur later in the design phase and should include
detailed object diagrams for the upper levels of the
system, perhaps down to the level at which the design
becomes more procedural than object-oriented. The
critical design review would then include the detailed
procedural designs, perhaps using an ‘Ada-based
design language. This review might actually take
place as a series of incremental reviews of different
portions of the design. This later approach is
supported by the well-defined modularity of an
object-oriented design.

The traditional functional viewpoint provides a
comprehensive framework for the entire software life
cycle. This viewpoint reflects the action-oriented
nature of the machines on which software is run.
The object-oriented approach discussed here can also
provide a comprehensive view of the life cycle. The
object-oriented viewpoint, however, reflects the

natural structure of the problem domain rather than
the implicit structure of our hardware. Thus, it
provides a "higher-level” approach to software
development which decreases the distance between
problem domain and software solution. By making
complex software easier to understand, this simplifies

both system development and maintenance.

References

{Abbott 83}

Abbott, R. J. "Program Design by Informal English
Description," Communications of the ACM, September
1983.

[Agresti 84]

Agresti, William W. "An Approach to Developing
Specification Measures,” Proceedings of the 9th
Annual Software Engineering Workshop, GSFC
Document SEL-84-004, November 1984.

[Agresti 86]

Agresti, William W., et. al. "Designing with Ada for
Sateltite Simulation: a Case Study,"” Proceedings of the
Ist International Conference on Ada Applications for
the Space Station, June 1986.

5207

[Agresti 87]

Agresti, William W. Guidelines for Applying the
Composite Specification Model (CSM), GSFC
Document SEL-87-003, June 1987.

[Bailin 88]

Bailin, Sidney C. and J. Michael Moore. "An Object-
Oriented Specification Method for Ada," to be
presented at the Fifth Washington Ada Symposium,
June 1988.

[Basili 85)
Basili, V. R., et. al. "Characterization of an Ada
Software Development,” Computer, September 1585.

[Booch 83]
Booch, Grady. Software Engineering with Ada,
Benjamin/Cummings, 1583.

[Boocfx 86a}

Booch, Grady. "Object-Oriented Software

Development," TEEE Transactions on Software

Engineering, February 1986.

{Booch 86b]
Booch, Grady. Software Engineering with Ada, 2nd
Edition, Benjamin/Cummings, 1986.

{Booch 87]
Booch, Grady. Software Components with Ada,
Benjamin/Cummings, 1987. -

[Buhr 84}
Buhr, R. J. A. System Design with Ada, Prentice-

Hall, 1984.

[{Chen 76]

Chen, P. "The Entity-Relationship Model -- Toward
a Unified View of Data,” ACM Transactions on Data
Base Systems, March 1976.

{Cherry 85]
Cherry, George W.
Thought**Tools, 1985.

PAMELA Course Notes,

[Cherry 86]
Cherry, George W. PAMELA Designer’s Handbook,

Thought**Tools, 1986.

[Cherry 88]) 7
Cherry, George W. PAMELA 2: An Ada-Based
Object-Oriented Design Method, Thought**Tools,

February 1988.

RiL gy € m i ui I

'
|

1 (N I n (TR 1Y R

General Object-Oriented Software Development with Ada

[Cox 86]
Cox, Brad. Object-Oriented Programming: an

Evolutionary Approach, Addison-Wesley, 1986.

[Dijkstra 68]
Dijkstra, Edsgar W. "The Structure of the ‘THE’

Multiprogramming System,"” Communications of the
ACM, May 1968.

[{Godfrey 87]

Godfrey, Sara, Carolyn Brophy, et. al. Assessing the
Ada Design Process and its Implications: a Case
Study, GSFC Document SEL-87-004, July 1987.-

{Goldberg 83}
Goldberg, Adele and David Robson. Smalltalk-80:
The Language and Its Implementation, Addison-
Wesley, 1983.

[McGarry 88]

McGarry, Frank and leham Agresti. "Measuring Ada
for Software Development in the Software
Engineering Laboratory (SEL)," Proceedings of the
21st Hawaii International Conference on Software
Engineering, January 1988.

[Nelson 86}

Nelson, Robert W. "NASA Ada Experiment --
Attitude Dynamic Simulator,” Proceedings of the
Washington Ada Symposium, March 1986.

[Parnas 72]

Parnas, David L. "On the Criteria to be Used in
Decomposing Systems into Modules," Communications
of the ACM, December, 1972.

[Parnas 79]

Parnas, David L. "Designing Software for Ease of
Expansion and Contraction,” [EEE Transactions on
Software Engineering, March 1979.

5207

[Rajlich 85]

Rajlich, Vaclav. "Paradigms for Design and
Implementation in Ada,” Communications of the
ACM, July 1985.

[Seidewitz 86a]
Seidewitz, Ed and Mike Stark. "Towards a General
Object-Oriented Software Development

. Methodology,” Proceedings of the Ist International

Conference on Ada Apphcauons for the Space Station,
June 1986.

[Seidewitz 86b]

Seidewitz, Ed and Mike Stark. General Object-
Oriented Software Development, GSFC Document
SEL-86-002, August 1986.

(Seidewitz 87]

Seidewitz, Ed. "Object-Oriented Programming in
Smalltalk and Ada", Proceedings of the Conference on
Object-Oriented Programming, Languages, Systems
and Applications, October 1987, :

[Stark 87]

Stark, Mike and Ed Seidewitz. "Towards a General
Object-Oriented Ada Lifecycle,” Proceedings of the
Joint Conference on Ada Technology / Washington
Ada Symposium, March 1986.

[Ward 85]

Ward, Paul T. and Stephen J. Mellor, Structured
Development for Real-Time Systems, Yourdon Press,
1985.

[Yourdon 78)

Yourdon, Edward and Larry L. Constantine.
Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design, Yourdon
Press, 1978.

Lessons Learned in the Implementation Phase of a
Large Ada™ Project

Carolyn E. Bmphy , Sara Godfrey .
\‘V'xlham W, Agraul, and Victor R. Basxh

1 Depariment of Computer Science 2 Goddard Space Flight Center 3 Computer Sciences Corporation

University of Maryland Code 552.1
Greenbelt, MD. 20771

College Park, MD. 20742

Abstract

We need to understand the effects that introducing
Ada has on the software development environment.
This paper is about the lessons learned from an ongoing
Ada project in the Flight Dynamics division of the
NASA Goddard Space Flight Center. It is part of a
series of lessons learned documesnts being written for
each development phase.

FORTRAN is the usual development language is
this environment. This project is one of the first to use
Ada in this environment. The experiment consists of
the development of two spacecraflil dynamics simulators.
One is dope in FORTRAN with the usual development
techniques, and the other is done with Ada. The Ada
simulator is 135,000 lines of code (LOC), and the FOR-
TRAN simulator is 45,000 LOC.

We want to record the problems and successes
which occurred during implementation. Topies which
will be dealt with include (1) use of nesting vs. library
units, (2) code reading, (3) unit testing, and (4) lessons
learned using special Ada features,

It is important to remember that these results are
derived from ome specific environment; we must be very
careful when extrapolating to other environments.

However, we believe this is a good beginning to abettcr
understandiag of Ada use in production environments.

Ada is & trademark of the US. Department of Defense - Ada Joint
Program Office.

Contact: Carolys Bropby, Department. of Computer Science,
University of Maryland, College Park, MD 20742, (301) 454
6154.

Support for this research provided by NASA grant NSG-5123 to the
Ugiversity of Maryland.

5207

System Sciences Division
8728 Colesville Road
Silver Spring, MD. 20910

Ada incorporates many software development con-
cepts; it is much more than “just another language”.
As such, we need to understand the effects of introdue-
ing Ada into the software development environmest.
This paper concentrates on the lessons learned from an
ongoing Ada project in the Flight Dynamies Division of
the NASA Goddard Space Flight Center (GSFC). The
Ada project is sponsored by the GSFC Software
Engineering Laboratory (SEL). It is part of a series of
lessons learned documents bemg written for each
development phase.

Environment

FORTRAN is the usual deve]opment language in
this environment. The flight dynamics applications
involve mission analysis and spacecraft orbit and atti-
tude determination and control. Many of the software
development projects are similar from mission to mis
sion providing, for example, au attitude ground support
system or an attitude dynamics simulator. This pattern
of developing similar applications is lmportant for
domain expertise snd for the legacy developed in this
environment for code, designs, expectations and intui-
tions. The similarity between projects allows = high
level of reuse of both design and code. Since the

problems are basxca.lly famxl;a.r opes, the development

methodologies which involve much iteration do not seem

to be necessary. The waterfall development model is
basically used here, and seems to work well in this case.
Lessons learned from the initial uses of Ada do not
include changing this basic methodology.

Project

The project was originally designed as a parallel
study with two teams. Each would develop a spacecraft
dyoamics simulator, one with FORTRAN as the Vimple-
mentation language, and one with Ada as the implemen-
tation language. The specifications for each simulator
were the same, supporting the upcoming Gamma Ray
Observatory (GRO) mission. However, there are many

1 1L

I

W R

i

L]l

di |

L} N]

other differences between the projects which keep the
study from being truly “parallel”. The FORTRAN ver-
siop was the production version, thus they had schedul-
ing pressures the Ada team did not have. Without
scheduling pressures, the Ada team made enhancements
in their version not required by the specifications, which
increased time spent on the project. This was also the
first time any of these team members had done an Ada
project, while the FORTRAN team was quite experi-
enced with the use of FORTRAN. The Ada team
required training in the language and development
methodologies associated with Ada, while the FOR-
TRAN team did things in the usual way [McGarry,
Page et sl. 83]. The Ada team also experimented with
various design methodologies; this was necessary to find
which ones would work better for this development
environment. The FORTRAN team was working with
s mature and stable environment. In switching to Ada,
the legacy of reuse for design, code, intuitions and
experience are gone, and will be rebuilt slowly in the
new language.

The philosophies of development were quite
different between the two projects. The Ada team con-
sistently applied the ideas of data abstraction and infor-
mation biding to their design development. The FOR-
TRAN development used structural decompasition
methods.

Our goals with this project include:

(1) How is the use of Ada characterized in this
environment?

(2) How should the existing development process be
modified to best changeover from FORTRAN to
Ada?

(3) What problems have been encountered in
development? What ways have we found to deal
with them?

Current Project Status

Both the FORTRAN and Ada teams started in
January, 1985. The Ada team began with training in
Ada, while the FORTRAN team immediately began
requirements analysis. The FORTRAN team delivered
its product (45K) after completing acceptance testing in
June, 1087. The Ada team is scheduled to finish system
testing its 135K product in February, 1988. Discussions
of the product size differences and effort distributions
are presented in [McGarry, Agresti 88

The lesscns learned from major phases in the Ada
development are being recorded in a series of SEL
reports: Ada training [Murphy, Stark 85|, design |God-
frey, Brophy 87|, and implementation lia preparation].
This paper presents some of the main results from the
implementation (code and unit test) lessons learned.

5207

Lessons Learned

1. Nesting vs. Library Units

1.1 The flat structure produced by ustng library units has
advaniages over a heauily nested struciure

Nesting has many eflects on the resulting product.
The primary advantage of nesting is that it enforces the
principle of information hiding structurally, because of
the Ada visibility rules. Whereas with library units, the
only way to avoid violations of information hiding is
through self-discipline. In addition, the dot notation
tells the package where a module is located.

There are quite a few disadvantages to nesting,
however. Nesting makes reuse more difficult. A second”
dynamics simulator in Ada is now being -developed
which can reuse up to 40% of the Ada project's code.
But in order to reuse it, the nested code has to be
unpested, since the new application only needs some of
the nested units. This is often a labor intensive opera-
tion. Nesting also increases the amount of recompila-
tion required when changes are made, since Ada
assumes dependencies between even sibling nested
objects/procedures, even when the dependency is not
really there. This requires more parts of the system to
be recompiled than is necessary when more library units
are used. [t is also harder to trace problems back
through nested levels than it is through levels of library
units. There is no easy way to tell where a unit of code
was called from, when it is pested. But library units
have the "with™ clauses to identify the source of a piece
of code. For this reason it is now believed that over use
of nesting at the expense of usipg thore library umnits
makes maintenance harder. This is cootrary to the
team's earlier expectations. The team had used nesting
successfully before on a 5000 lines of code training pro-
ject. However, this kiad of approach does not scale-up
well when developing large projects.

Library units seem to have a lot of advantages.
Besides fewer recompilations when changes are made,
and easier upit lesting, every library unit can easily be
made visible-to any other library unit merely by use of
the "with” clause. In nested units this visibility does not
exist, and a debugger becomes esseptial to see what is
happeniog at the deeper levels that are not within the
scope of the test driver. Library units allow smaller
components, smaller files, smaller compilation ugits, and
less duplication of ¢code. The system is more maintain-
able, since it is casier o find the unit desired. Reuse
with library units is also easier, since the parts of the
system are smaller. Configuration control is also easier
with library unils since more pieces are separate (i.c..
the ratio of changes to code segments modified is closer
1o 1). The major disadvantage seems o be that a com-
plicated library structure develops, which can lead w
errors by the developers. However, if the Ada project
were to be done over now, the team would use more
library units, and nest less.

4-25

Advantages and Disadvantages of
Nesting vs. Library Units

NESTING ,
) Advantages Disadvantages
* information hiding * enlarged code

* visibility control
¢ type declarations in
one place

* more recompilations
¢ harder to trace probiems
through nested
levels
can't essily tell where a
unit of code called
from _.
. Lype declarations in one
place means problems
for reuse
* harder maintenance
¢ debugger rtqulred
¢ larger unit sizes
inhibit code reading
¢ harder to reuse part of
the system

LIBRARY UNITS

‘Advantages

* fewer recompilations

* easier unit testing

* smaller components

¢ smaller files

* smaller compilation units

* less code duplication

¢ easier maintenarice

* "with” clauses show source
of other code units used

¢ easier reuse

¢ easier configuration control

1.2 The 6alam:c bciwecn nesting and library units i¢ an
important implementation issue, not a design issuc.

The issue of whether to use library units or nested
units first arises in the design phase. At least this is the
case if it is assumed that the design documents reflect
this sspect of implementation (i.e., the design docu-
meats indicate in some way when nesting is intended vs.
when library units should be used). While it is
appropriate for the desigo to show dependencies, these
should not dictate xmplementnuon as far as the library
unit/nesting question is ¢ oncerned. The team con-
sidered the decisions concerning nesting/library units to
be aa implementation issye.

5207

Disadvaatages

* po information biding
* complex library structure

The library units in the Ada project went down
about 3 to 4 levels, while ncsung went down maagy lev-
els below that. Another view of the system shows the
Ada project had 124 packages and 55 library units.
Duriog implementstion most team members felt an
appropriate balance had been reached between nesting
levels and number of library ugits. However, in retros-
pect, several felt the nesting bad been overdoune.

[T

Hig il

i W oMy sl

Il §

 []HH |

it

A

] Wi

il

iy

1.8 It appears best to use library units at least doun to
the subsystem level, and nesting at lower levels where
there is minimal intcraclion among a small number of
modules

Experiences with unit testing seem to indicate that
library units should at least go down Lo the subsystem
level. This makes testing easier. Below this level the
benefits of nesting sometimes become too important Lo
ignore. This is one heuristic which could be used to
belp determine when the transition from library units to
nested units should occur.

An additional way to determine when the transi-
tion should occur is to examine the degree of interaction
between pieces. For modules which interact beavily,
library units are preferred. At the point where the
interaction drops off, using nested units is preferable.
Sections with nested code are easier 1o deal with when
they are small.

1.4 In mapping design o code, caulion should be used in
applying too rigorous a sel of rules for vistbility control.

In an attempt to control visibility, two features
appear to have been oo rigorously applied. The first
feature is nesting. The design of the Ada project
seemed 1o suggest a particular nesting implementation.
But this created many objects within objects yielding a
high degree of nesting. The second way to control visi-
bility is through the use of many ‘“call-through''s (a pro-
cedure whose only function is to call another routine).
“Call-through"s were used to group appropriate pieces
together exactly as represented in the design. They can
be implemented via nesting or library units. Faithful-
ness to the design structure was maintained this way.

The design had non-primitive objects with specific
operations. These objects were implemented as pack-
ages. To put the specific operations (subprograms) into
the objects (packages) the team used *“‘call-through’s.
Thus a physical piece of code was created for every
object in the design. “Call-through™s are one of the
reasons for the expanded code in the Ada project when
compared to the FORTRAN version. [t is estimated
that out of the 135K LOC making up the Ada system,
22K LOC (specifications and bodies) are because of
“call-through"s. While ““call-through''s provide a good
way o collect thiogs into subsystems, these should be
limited to only two or three levels in the future.

If the implementation were o be done over now,
many of the existing ‘“‘call-through’s would be elim-
inated. Instead of creating actual code to correspond
with every object in the design, some objects in the
design would remain “logical objects'. No actual pack-
ages would exist; instead, a logical object would be
made up of a collection of lower level objects.

2. Code Reading

Code reading is gencrally done with unit testing.
The developer doing the code reading is not the one

5207

who developed the code. Comments are returned to the
original developer. After code reading and unit testing,
the unit is put under configuration control.

2.1 Code reading helps in travning people to use Ada.

Besides helping o find errors, code reading has.the
benefit of increasing the proficiency of team members in
Ada. Individuals can see new ways to handle the algo
rithms being encoded. Code reading also allows another
person besides the original developer to understand a
given part of the project. This insight should help
understanding and lead to better solutions of problems
in the future.

2.2 Code reading helps isolate style and logic crrors.

The most common errors found in code readiog
with Ada were style errors. The style errors involved
adding or deleting comments, format changes, and
changes to debug code (pot left in the final product).
Other types of errors found are initialization errors, and
problems with iocompatibilities between design and
code. This can be due to either a design error or a cod-
ing error.

Because the Ada compiler exposes many errors not
exposable by a FORTRAN compiler, code reading Ada
bas a different flavor than code reading FORTRAN.
For example, the Ada compiler exposes such errors as
(1) wrong data types, (2) call sequencing errors, (3) vari-
sble errors— either the variable is declared and never
used, or it is used without being declared. So, one
seasoned FORTRAN developer working on the Ada pro-
ject noted that code reading is more interesting in FOR-
TRAN, since there were more interesting errors found in
code reading FORTRAN, pot found in reading Ada
code. In general, logic errors are bard to find in this
application domain, but enough logic errors are found to
make code reading worthwhile.

Some of the difficulty of code reading with Ada on
this project was due to the heavy uoesting and the
number of “call-through™ units. Code reading would
bave been helped by a flatter implementation. The
SEPARATE facility makes it necessary to look in many
places at once to follow the code. However, code read-
ing in Ada was easier than in FORTRAN because the
code was more English-like, and hence, more readable.
Often the reused FORTRAN code is an older variety
without the structured coanstructs available in later ver-
sions.

Code reading tended to miss errors that spanned
multiple units. This would be expected with any imple-
mentation language as well. Oune example was a prob-
lem where records were skipped when they were being
output. The dcbugger actually found the problem.

Despite the implementation language, code reading
appears to be important for highly algorithmic routines.

Groups of routines that are used only to call others may
be checked to make sure the design's purity is main-
tained.

3. Unit Testing

8.1 Unit lesting was found to be harder uath Ada than
unth FORTRAN.

The FORTRAN units are already relatively iso-
lated; this makes unit testing easy. Ouly the global
COMMONS need to be added to do the unit tests. On
the other hand, the Ada units require a lot of "with'd
in" code, and are much more interdependent. Another
very different Ada project had perhaps even more inter-
dependence between its modules than the Ada project
did. That team also found the interdependence made
upit testing very difficult. More interdependence exists
between Ada umits because there are more relations to
express in Ads. There are textual inclusion (nesting),
with-ing in (library units), and iovocation. FORTRAN
only bas invocation.

8.2 The sntroduction of Ada as the simplementation
language changed the unil testing methods dramatically.

Unit testing with Ada was dope very differently.
Since one unit -depends on many others, it is usually
bard to test a umit in isolation, so this was gegerally not
doge. The Ada pieces were integrated up to the pack-
age level, and then unit testing was done. Then testing
was dope with groups of units that logically fit together,
ratber than actual unit testing. The integrated units
are tested, choosing only a subset of possible paths at a
time. The debugger is used to look at a specific upit,
since the test drivers cannot "see” the nested ones.
With Ada projects a debugger becomes essential. This
is in contrast to the usual development in FORTRAN
where no integration occurs at all until after unit test-
ing. .
This shows that the biggest difference between the
way FORTRAN and Ada projects are done at this point
in development is incremental integration. This actu-
ally represents a change in the development lifecycle of
an Ada product; integration and unit testing are alter-
nately done rather than fnishing unit testing before
integration.

8.8 The library unit/nesting level issue d:rccdy affects
the difficuity of unit lesting.

The greater the nesting level, the more difficult
unit testing is, since the lower level units in the subsys
tem are not in the scope of the test drivér. This is the
primary reason a debugger becomes a required testing
aid with Ada projects. For this reason, more library
units and less nesting would have made Lesting easier.
Library units have to go down w a level in the design
that makes testing more feasible, With the Ada project
that would have meant taking library units down to &
lower level in the design, if the project were 1o be done
over.

5207

Two other ways to deal with the nesting during
unit test were tried and were not very successful. One
solution pulls an inner package out, and includes the
types and "with'd ia” modules the outer package used
in order to execute the inner ope. This is difficult to do
for each unit. The other solution is to modify the
specifications of the outer package so that nested pack-
ages can be "seen™ by the test driver. This solution
requires lots of recompilation. With more library units,
there would be less recompilation, because there would
be fewer changes of specifications. Again however, the
best way to test was w0 use the debugger on unaltered
code.

8.4 The imporlance of unit lesling scems to be more
related to application arca than to smplementalion
language. LT -

Whether the implementation is in FORTRAN or
Ada, does not seem as important as whether the appli-
cation has lots of calculations or has lots of data mani-
pulations. Unit testing seemed more valuable with
scientific applications; perhaps because calculation errors
show up when only a small amount of localized code is
executed. But data m:nipulstion errors require ‘more of

are present.
4. Use of Ada's Special Features

{.1 Separation of specificalions and bodies is quile
beneficial and casy lo implement.

The team entered the specifications first, whenever
possible, before the rest of the code. This gave a high
level view of the system early in the development.
Another benefit is that this helped clarify the interfaces
early. Separating the specifications and bodies also
reduces the amount of reéatflpllatlon required when
changes are made.

4.2 Generics were fairly easy lo implement and they
reduce the amount of code required.

The only problems encountered were with correct
compilation of the generics in some cases, due Lo com-
piler bugs in an early version of the compiler, ratber
than incorrect code. As Ada matures, this will pot be a
problem at all.

4.3 Using too many types mcrcascs coding dxﬁlculty

The strong typing was very difficult to get used Lo,
when one is accustomed o weakly typed languages such
as FORTRAN. It was easy Lo create too many dew
types as well.

Often a brand new type was created with a strict
range appropriate for one portion of the application.
Then in other arcas where subtypes could have been
used, the range on the original type was found to be wo
restrictive, so another brand new type was created
instead w handle the new situation. Then a whole new

4-28

]

[I i NIE A 1 i 1

Wi

i

set of operations bad to be created as well for the addi-
ticoal pew type. Next time the team would recommend
creating ® more general new type, and using many
different subtypes of the original type, rather than
creating more new types. In this way operations can be
reused and there are far fewer main types to keep track
of. Designers peed to spend time developing {amilies of
types that inherit properties (rom one another.

The stroog typing presented some problems when
testing -units, though it prevents some kinds of errors,
also. It was harder to write test drivers that could deal
with all the types in the units being tested. It was also
harder to do the 1/O, since so many types had to be
dealt with.

4.4 Tasking was difficult lo code and test, Aowever, this
scems due lo concurrency in general and nol Ada
specifically.

Tasks were used in the user interface part of the
project. The user was given many options which made
the interactions between the tasks of the subsystem
very difficult to plan and execute correctly.

It was harder to code tasks from the design than it
was to code other types of units. However, this is not
really due to Ada, but rather it is the nature of con-
currency problems. The language made the use of task-
ing easier, and encouraged the developers to use tasking
more than they would have otherwise. The dynamic
relationships of concurrency cannot be represented in
the design (termination, rendezvous, multiple threads of
control). Correctaess was very difficult to assure, as is
usual with these kinds of problems, and deadlock was

hard to avoid. Functional testing was done, which is

the usual type in this envirooment.

The major problem the developers had was with
exceptions. These are no worse with tasking than they
are with any other program unit, however.

4.5 Ezception handlers have o be coded carcfully.

The key problem with exceptions is deciding the
best way to handle them. Errors and the sources of
ervors can be hard to find if the exception handlers are
not coded carefully. Suppose a particular procedure will
call another unit, expecting some function to be per-
formed, and certain kinds of data to be returned. If an
exception is raised and handled in the called unit, and it
is pon-specific for the problem raising the exception
(e.g., "“when others™) , the caller gets control back
without the required function being performed. But the
exception was handled and data was returned, so the
call looks successful. Yet as soon as the caller tried to
use the data from the routine where the exception was
raised and handled, it fails. Because of propagation, it
can be very difficult to trace back the error to the origi-
nal source of the problem.

5207

Several members of the team would recommend
incorporating the way exceptions are to be handled into
the design, rather than leaving this until implements-
tion. Put into the design (1) what exception would be
raised, (2) where it will be handled, and (3) what should
happen.

Ada Fesatures*

implementation

ease beaefit

tasking - +
generics + ++
strong typing 0 0
exception

handling 0 +
nesting + -
separate

specs/bodies ++ ++

¢ This figure represents a subjective assessment
based on team member interviews

Summary

We have learned several important things about
four major areas in implementation. There are many
advantages to using library units, though nesting can
have its usefulness at some point below the subsystem
level. Code reading helps train people in Ada, and helps
to isolate style and logic errors. Unit testing was sub-
stantially changed by using Ada: the first stages of
integration often began before unit testing proceeded.
Some Ada features are quite powerful and should be

" carefully used. :

It is important to remember that these results are
derived from one specific environment. We must be
very carefu] when extrapolating to other environments.
There are also many questions still left to be answered.
Studies of this project will coatinue, and other Ada pro-
jects are being started. These will help us evaluate the
eflects on longer term issues such as reuse and maintai-
nability of the Ada projects. We believe this project is
a good beginning to a better understanding of Ada use
in production environments.

Acknowledgements
The Ada experiment is managed by Frank
McGarry of NASA/GSFC. The authors would like to
thank him snd the Ada team for their cooperation and
assistance.

ORIGINAL PAGE IS -
OF POOR QUALITY

-
References Biographies
[Agresti 85] -
Agresli W, ",'»\da Expenmcn‘l.: LCSSOI."S Learned Carolyn E. Brophy is a graduate research assis-
(Trnmm%/chmremeuts Analysis ansc)". Goddard tant st the University of Maryland, Collcge Park. Her __
Space Flight Ceater, Greenbelt, MD 20771, August rescarch interests arc in software cngineering, and she is %
1985. working with the NASA Goddard Software Engineering
Laboratory. Ms. Brophy received a B.S. degree from
the University of Pittsburgh in buology and pharmaq
[Godfrey, Brophy 87))) She is a member of ACM. : B o -
SEL-87-004, “Assessing the Ada Design Process and -
Its Implications: A Case Study', Godfrey S., and W&rm%
Brophy C., Goddard Space Fiight Center, Green- ¢ —
beit, MD 20771, July 1987. - ' =
McGarry, Agresti 88] . -
“Measuring Ada for Software Development in the -
Software Engineering Laboratory', Hawaii Interna-
tiopal Conference on Systems Science, January, W
1088. =
f:Ck R Mﬁ— =
McGarry, Nelson 85] Sara H. Godfrey is with Goddard Space Flight
McGarry F., and Nelson R., “An Experiment with Center in Greenbelt, Maryland, where she has been
Ada -~ The GRO Dynamics Simulator Project workiog with the NASA Goddard Software Engineering ==
Plan,” Goddard Space Flight Center, Greenbelt, Laboratory. She received a B.S. degree from the o
MD 20771, April 1985. University of Marvland io mathematics. (picture miss-
iog) S -
[McGarry, Page et al. 83] William W, Agresti is wutb Computer Sciences
SEL-81-205, “Recommended Approach to Software Corporation in Silver Spring, Maryland. His applied
Development”, McGarry F., Page J., Eslinger S., research and development projects support the Software —=
Church V., aad Merwarth P, Goddard Space Engineering Laboratory at NASA's Goddard Space =
Flight Center, Greenbelt, MD 20771, April 1983. Flight Center. His research interests are in software
process engineering, and he recently completed the
. tutorial text, New Paradigms for Sojtwarc Development, _
Murphy, Stark 83| for the [EEE Computer Society. From 1973-83 he held -
SEL-85-002, “Ada Traiging Evaluation and Recom- various faculty and administrative positions at the
mendations from the Gamma Ray Observatory Ada Upiversity of Michigan-Dearborn. He received the B.S.
Development Team", Murphy R., and Stark M., degree from Case Western Reserve University, the M.S. —
Goddard Space Flight Center, Greenbelt, MD and Ph.D. from New York University. =
20771, October 1985.
Victor R. Basili is Professor and Chairman %
of the Computer Science Department at the Univer-
sity of Maryvland, College Park, Maryvland. He was
involved in the design and development of several —
software projects, including the SIMPL family of i
programming languages. He is currently measuring
and evaluating software development in industrial
and government settings and has consulted with many =
agencies and organizations, including 1BM, GE, -
CSC, GTE, MCC, AT&T, Motorola, HP, NRL,
NSWC, and NASA
==
=
=
-

5207

4-30

He is one of the founders and principals in the Software Engineering Labora-
tory, a joint venture between NASA Goddard Space Flight Ceater, the University of
Maryland and Computer Sciences Corporation, established in 1076. He has becen
working on the development of quantitative approaches for software management,
engineering and quality assurance by developing models and metrics for the
software development process and product.

Dr. Basili has authored over 00 papers. In 1982, he reccived the OQOut-
standing Paper Award from the [EEE Transactions on Software Engineer-
ing for his paper on the evaluation of methodologies.

He was Program Chairman for several conferences including the 6th Interna-
tional Conference on Software Engineering. He serves on the editorial boards of
the Journal of Systems and Software and the [EEE Transactions on Software
Enginecring and is currently Editor-in-Chief of TSE. He is a member of the Board
of Governors of the [EEE Computer Society.

5207

OBJECT-ORIENTED PROGRAMMING IN SMALLTALK AND ADA

Ed Seidewitz
Code 554 / Flight Dynamics Analysis Branch
Goddard Space Flight Center
Greenbelt MD 20771
(301) 286-7631

Presented at the
1987 Conference on Object-Oriented Programming Systems, Languages and Applications
' October 1987

Abstract

Though Ada and Modula-2 are not object-
oriented languages, an object-oriented
viewpoint is crucial for effective use of their
module facilities. It is therefore instructive to
compare the capabilities of a modular language
such as Ada with an archetypal object-oriented
language such as Smalltalk. The comparison in
this paper is in terms of the basic properties of
encapsulation, inheritance and binding, with
examples given in both languages. This
comparison highlights the strengths and
weaknesses of both types of languages from an
object-oriented perspective. It also provides a
basis for the application of experience from
Smalltalk and other object-oriented languages
to increasingly widely used modular languages
such as Ada and Modula-2.

5207

1. Introduction

Procedural programming techniques concentrate
on functions and actions. Object-oriented
techniques, by contrast, attempt to clearly
model the problem domain. The designers of
Simula recognized the attractiveness of this
concept for simulation and included specific
constructs for object-oriented programming
[Dahl 68]. Since then, several programming
languages have been designed specifically for
-general-purpose object-oriented programming.
The archetypal example is, perhaps, Smalltalk
because the language is structured so completely
around the object concept {Goldberg 83].

Ada* [DOD 83] and Modula-2 [Wirth 83] are
not designed to be object-oriented
programming languages. However, they do
have certain object-oriented features which are
descendants of Simula constructs. Further,
object-oriented concepts have become
extremely popular for design of Ada programs
(e.g., see [Booch 83]). This paper compares and
contrasts the strict object-oriented capabilities
of Smalltalk with the object-oriented features
of Ada. The comparison is in terms of the
basic object-oriented properties of
encapsulation, inheritance and binding. T have
attempted to keep the main body of the paper
fairly objective, reserving my more
judgemental comments for the conclusion.

*Ada is a registered trademark of the US
Government (Ada Joint Program Office)

1]

[N S A

Il

1

will

L (1IN P] ui T

fl

2. Encapsulation

An object consists of some private data and a
set of operations on that data. The intent of an
object is to encapsulate the representation of a
problem domain entity which changes state over
time. Abstraction deals with how an object
presents this representation to other objects,
suppressing nonessential details. The stronger
the abstraction of an object, the more details
are suppressed by the abstract concept. The
principle of information hiding states that such
details should be kept secret from other objects,
so as to better preserve the abstraction modeled
by the object. Both Smalltalk and Ada directly
support these basic encapsulation concepts for
objects. In Smalltalk these features are the
central structure of the language while in Ada
they are added to a core language of
ALGOL/Pascal heritage.

' In Smalltalk, objects are always instances of é

class which represents a set of problem domain
entities of the same kind. All instances of a
class provide the same interface (set of
operations) to other objects. A class thus
represents a single abstraction. The class
definition provides implementations for each of
the instance operations (methods in Smalltalk)
and also defines the form of the internal
memory of all instances.

A Smalltalk method is called by sending a
message to the object, such as:
MyFinances receive: 25.50

The protocol of an object is the set of all
messages that may be received by the object. A
class itself has a protocol which usually includes
a few messages to request creation of instances,
e.g. "Finances new". Note that protocols are
not really a part of the Smalltalk language
proper, but are documentation of the
abstraction represented by a Smalltalk class.

The basic object-oriented construct in Ada is
the package. Unlike Smalltalk, objects can be
defined directly in Ada without having any
class. Further, Ada requires the definition of
the interface of an object separately from the
implementation of the object. This is done in a
package specification. Ada uses a more
traditional procedure call syntax for object
operations.

5207

Ada is a strongly typed language, so the type of
every operation argument and return value must
be declared. A package specification provides
enough declarative information for compile-
time syntax and type checking. Additional
operation descriptions, such as in the Smalltalk
protocol, can be provided by comments. Other
code refers to package operations using a
qualified name, e.g., "Finances.Receive". The
package body gives the implementation of the
package.

Example 1 -- Finances

Class Finances is a simple class of objects which
represent financial accounts of income and debt
(all examples are simplified and adapted from
[Goldberg 83]). The protocol for this class is:

n 1 r !

instance creation

initialBalance: amount
Begin a financial account
with "amount” as the
amount of money on
hand.

new Begin a financial account
with 0 as the amount of
money on hand.

inan instance pr 1
transactions ’

Receive an amount of
money.

receive: amount

Spend an amount of
money.

spend: amount

inquiries

Answer the total amount
of money currently on
hand.

cashOnHand

Answer the total amount
of money received so far.

totalReceived

totalSpent Answer the total amount
of money spent so far.

The implementation of the Finances class must
include a method for each of the messages in

the protocol. It also defines the names of a set

of instance variables which represent the
internal data of each class instance. The
instance variables and the implementations of
the methods are hidden from users of instances
of the -class. In the Smalltalk-80 system, the
various parts of a class definition are accessed
through an “interactive system browser." The
_textual description used here is based on the
one used in [Goldberg 83]. The definition of
class Finances is:

class name Finances

superclass . Object

instance variable names income
debt

class methods
instance creation

initialBalance: amount
~super new setlnitialBalance: amount

new
~super new setlnitialBalance: 0

instance methods
transactions

receive: amount
income <- income + amount

spend: amount
debt <- debt + amount

inquiries

cashOnHand
“income - debt

totalReceived
~income

totalSpent
~debt

5207

private

setInitialBalance: amount
income <- amount.
debt <- 0

Note that "super new" refers to the system
method to create a new mstance "A* indicates
returning a value and "<-" indicates assignment.
Some examples of use of this class are:

MyFinances <- Finances mmalBalance 500 00.
MyFinances spend: 32.50. =~
MyFinances spend: foodCost + salesTax.
MyFinances receive: pay.-

tax <- taxRate * (MyFmances totalRecexved)

The specification for an Ada package Finances
corresponding to the above Smalltalk protocol
is: oo

package Finances is
type MONEY is FLOAT;

-- Initialization
procedure Set (Balance : in MONEY);

-- Transactions
procedure Receive (Amount : in MONEY); "~
procedure Spend (Amount : in MONEYY;

-=- Inquiries

function Cash_On_Hand return MONEY;
function Total _Received return MONEY;
function Total_Spent retlixrn MONEY;

end Finances;

The above specification for Finances really does
not define a complete object in the Smalltalk
sense. This is because a package is a static
program module, and cannot be passed around
as data. For an object to be passed as data in
Ada it must have a type. A type is analogous to
a Smalitalk class in that it represents a set of
objects with the same set of operations and
internal data. An object type is called a private
{ype in Ada because the representation of the
internal data is hidden. The specification for a
private type FINANCES is:

i il [

4|

ull T i

!

il i 1

all

i

l

f

package Finance_Handler Is

type FINANCES ls private;
type MONEY Is FLOAT,

-- Instance creation
function Initial (Balance : MONEY)
return FINANCES;

-- Transactions
procedure Receive
(Account : in out FINANCES;
Amount :in MONEY);
procedure Spend .
(Account : In out FINANCES;
Amount :in MONEY);

-- Inquiries
function Cash__On__Hand
(Account : FINANCES)
return MONEY;
function Total_Received
(Account : FINANCES)
return MONEY;
function Total_Spent
(Account : FINANCES)
return MONEY;

private

type FINANCES is
record)
Income : MONEY := 0.00;
Debt : MONEY := 0.00;
end record;

end Finance__Handler;

Private types must be defined within packages.
Package Finance Handler specifies each of the
operations on objects of type FINANCES, while
the type itself defines the internal data for each
object. The private part of the package
contains the definition of type FINANCES in
terms of other Ada type constructs. In this
case, objects of type FINANCES are effectively
declared to have two instance variables, as in
the Smalltalk example. (The private part of a
package is logically part of the package
implementation, not the specification. It is
included in the specification only so that the
compiler can tell from the specification alone
how much space to allocate for objects of
private types.) The package Finance_ Handler is

5207

in some ways similar to the metaclass of the
Smalltalk class Finances. In Smalltalk, a
metaclass is the class of a class. Both the
metaclass and the handler package provide a
framework for the definition of a class, and
they also allow for the definition of class
variables and class operations.

Since the declaration of instance variables is in
the private part of the specification of
Finance_Handler, the package body only needs
to define implementations for each of the
specified operations:

package body Finance_Handler is

-- Instance creation
function Initial (Balance : MONEY)
return FINANCES is
begin
return
{ Income => Balance,
Debt => 0.00)
end Finance__Handler;

-- Transactions
procedure Receive
(Account : in out FINANCES;
Amount :in MONEY) is
begin
Account.Income := Account.Income
+ Amount;
end Receive;

procedure Spend
(Account : in out FINANCES;

Amount : in MONEY) is
begin
Account.Debt := Account.Debt
+ Amount;
end Spend;
-- Inquiries

function Cash_On_Hand
(Account : FINANCES)
return MONEY is
begin
return
Account.Income - Account.Debt;
end Cash__On_Hand,

function Total_Received
(Account : FINANCES)
return MONEY is

begin
return Account.Income;

end Total_Received;

function Total_Spent
(Account : FINANCES)
return MONEY is
begin
return Account.Debt;
end Total_Spent;

end Finance_ Handler;

Each FINANCES operation explicitly includes
an Account of type FINANCES as one of its
parameters. The instance variables of an
Account are then accessed using a qualified
notation such as "Account.Income”. This access
to instance variables is only allowed within the
body of package Finance Handler. Some
examples of the use of type FINANCES are:

declare

My_ Finances
: Finance _Handler. FINANCES
:= Finance_ Handler.Initial
(Balance => 500.00);

begin

Finance_Handler.Spend
(Account => My Finances,
Amount => 32,50);
Finance_ Handler.Spend
(Account => My_ Finances,
Amount => Food_ Cost + Sales__Tax);
Finance__Handler.Receive
(Account => My_Finances,
Amount => Pay),
Tax := Tax__Rate
* Finance__Handler.Total_Received
(My_ Finances);

end;

Packages in Ada allow the definition of objects
as program modules or the definition of classes
as private types. Packages cannot themselves be
passed as data, but the instances of private
types can. It is also possible in Ada to define

classes of objects which cannot be passed as
data. This is done using a generic package
which serves as a template for instances of the
class. For example, the earlier specification for
package Finances can be made generic by
simply adding the keyword generic at the
beginning:

generic
package Finances is

end Finances;

Other packages can then be declared as
instantiations of the generic package. For
example:

declare

package My _Finances is
new Finances;

begin

My__Finances.Receive (Amount => Pay);
Cash := My_ Finances.Cash__On__Hand;

end;

I will have more to say later on other important
roles of generics in Ada.- -

3. Inheritance

A class represents a commén abstraction of a set

of entities, suppressing their differences. At a-

lower level of abstraction, some entities may

differ from others. A subclass represents a -

subset of the entities of a class. A subclass
inherits general abstract properties from its
superclass, defining only the specific
differences which appear at its lower level of
abstraction. This technique of subclass
inheritance allows the incremental building of
application-specific abstractions from general
abstractions. oo

analltalk directly supports the concept of
subclassing and inheritance. In Smalltalk every

class has a superclass, except for the system -

class Object which describes the similarities of
all objects. Instances of a subclass are the same

4-36

5207

1

il

o Al

€ I 1

(I}

-
lI\II \‘H

Il

I
[yl

Ho &

b

-

as instances of the superclass except for
differences explicitly stated in the subclass
definition. The allowed differences are the
addition of instance variables, the addition of
new methods and the overriding of superclass
methods. An instance of a subclass will
respond to af least all of the same messages as
instances of its superclass, though not
necessarily in exactly the same way.

Ada does not provide direct support for
subclassing or inheritance. However, the
concept of inheritance can be used profitably
within Ada, in some ways more generally than
in Smalltalk. When defining a subclass in Ada,
it is still necessary to declare all operations of
that subclass, even those inherited from a
superclass. Thus the specification of a subclass
package will include all the operations of the
superclass and possibly some additional ones.
(This also results in a hiding of the use of
inheritance reminiscent of the discussion in
[Snyder 86].) In the body of the subclass
package, inherited operations must be
implemented as call-throughs to the operations
of the superclass.

Example 2 -- Deductible Finances

The class DeductibleFinances is a subclass of
the Finances class of Section 2. Instances of
DeductibleFinances have the same functions as
instances of Finances for receiving and
spending money. However, they also keep
track of tax deductible expenditures. The
definition of DeductibleFinances specifies one
new instance variable, four new instance
methods and overrides two class methods:

class name DeductibleFinances
superclass Finances

instance variable names deductibleDebt
class methods

instance creation

initialBalance: amount
~(super initialBalance: amount) zeroDeduction

new
~super new zeroDeduction

5207

instance methods
transactions

spendDeductible: amount
self spend: amount deducting: amount.

spend: amount deducting: deductibleAmount
super spend: amount.)
deductibleDebt <- deductibleDebt

+ deductibleAmount

inquiries

totalDeduction
~deductibleDebt

private

zeroDeduction
deductibleDebt <- 0

Note that sending a message to "self" results in a
call on one of an object’s own methods, while
sending a message to "super" results in a call on
one of the methods of the superclass Finances.

Now consider an Ada type which defines a
subclass of the FINANCES type of Section 2:

with Finance_Handler;
package Deductible_Finance _Handler is

type DEDUCTIBLE_ FINANCES is private;
subtype MONEY is
Finance__Handler.MON‘EY;

-~ Instance creation
function Initial (Balance : MONEY)
return DEDUCTIBLE_ FINANCES;

-- Transactions
procedure Receive

(Account : in out DEDUCTIBLE _FINANCES;
Amount : in MONEY);
procedure Spend

(Account : in out DEDUCTIBLE_FINANCES;
Amount : in MONEY;
Deductible_Amount : in MONEY := 0.00);
procedure Spend__Deductible

(Account : in out DEDUCTIBLE_FINANCES;
Amount : in MONEY);

-- Inquiries

function Cash__On_ Hand
(Account : DEDUCTIBLE_FINANCES)
return MONEY;

function Total _Received
(Account : DEDUCTIBLE __FINANCES)
return MONEY;

function Total_Spent
(Account : DEDUCTIBLE_ FINANCES)
return MONEY;

function Total Deduction
(Account : DEDUCTIBLE _FINANCES)
return MONEY;

private

type DEDUCTIBLE_FINANCES is
record
Finances : Finance_Handler. FINANCES;
Deductible__Debt : MONEY := 0.00;
end record;

end Finance_Handler;

Package Deductible_Finance_Handler has the
new operations Spend_Deductible and
Total _Deductions, and it has a modified Spend
operation. The Spend procedure has a
Deductible_ Amount parameter with a default
value of 0.00.

DEDUCTIBLE _FINANCES implements
inheritance from FINANCES by using the
instance variable Finances of type FINANCES.
Inherited operations are then implemented as
call-throughs to operations on Finances:

package body Deductible_Finance_Handler is
-- Instance creation

function Initial (Balance : MONEY)
return DEDUCTIBLE__FINANCES is

begin
return
(Finances => Finance_Handler. Imual(Balance)
Deductible _Debt => 70.00)

end Initial;

5207

-~ Transactions
procedure Receive

{ Account : in out DEDUCTIBLE FINANCES;
Amount : in MONEY) is

begin
-- INHERITED --
Finance_ Handler.Receive
(Account => Account.Finances,
Amount => Amount)

end Receive;

procedure Spend

(Account : in out DEDUCTIBLE_FINANCES;
Amount : in MONEY;
Deductible Amount in MONEY := 0.00) is

begin ~e===
Fmance__Handler.Spend
(Account => Account.Finances,
Amount => Amount);

Account.Deductible__Debt
= Account.Deductible_ Debt
+ Deductible__ Amount;
end Spend;

procedure Spend_ Deductible
(Account : in out DEDUCTIBLE_FINANCES;
Amount : in MONEY) is

begin

- Spend
(Account - => Account,
“Amount => Amount,

Deductible_ Amount => Amount);
end Spend_ Deductible;

-- Inquiries
function Cash_On Hand

(Account : DEDUCTIHLE __FINANCES))
return MONEY is
begin

-- INHERITED --

return Finance_ Handler.Cash__On_Hand

(Account.Finances);

end Cash__On_ Hand;

function Total Deductions
{ Account : DEDUCTIBLE FINA\ICES)
return MONEY is)
begin
return Account.Deductible__Debt;
end Total Deductions;

end Deductible_ Finance__Handler;

4-38

1 |

il

&

=
-

i « w Hi sl mwi

Unlike Smalltalk, implementing inheritance in
Ada requires an extra level of operation call.
Also, in Ada the subclass does not have direct
access to the instance variables of the
superclass. The superclass package presents the
same abstract interface to subclass packages as
to any other code. This tightens the
encapsulation of the superclass abstraction. It
also allows easy extension to multiple
inheritance where a subclass may inherit
operations from more than one superclass.
Multiple inheritance simply requires multiple
superclass instance variables with inherited
operations calling-through to the appropriate
superclass operations. In this case the new class
is really a composite abstraction formed from
more general component classes.

The main drawback of this approach is that the
Ada typing system does not recognize
subclassing. In Ada all private types are
distinct. Even though the type
DEDUCTIBLE_FINANCES is logically a
subglass of type FINANCES, the type
DEDUCTIBLE_FINANCES is not a subtype of
type FINANCES. It is not possible, for
instance, to pass an instance of type
DEDUCTIBLE_FINANCES to a procedure
expecting an argument of type FINANCES.
The Ada compiler would see this as a type
inconsistency. A partial solution to this
involves the use of the Ada generic facility, and
will be discussed later in Section 4. However,
the problem cannot be fully overcome in Ada,
and [Meyer 86] clearly shows that true
inheritance is more powrful than genericity.

4. Binding

The Smalltalk message passing mechanism
operates dynamically. When a message is sent
to a Smalltalk object, the method to respond to
that message is looked-up at run-time in the
object’s class (and possibly superclasses).
Further, Smalltalk variables are not typed, so
they may contain objects of any class. Thus it
is generally not possible to determine statically
exactly what method in what class will respond
to a message. Messages are dynamically bound
to methods at run-time. If an object cannot
respond to a message, there is a run-time error.

The use of dynamic binding gives the
programmer great freedom to create general

code. Any object can be used in an instance
variable or as an argument in a message as long
as it can respond to the messages sent to it.
Another use of dynamic binding in Smalltalk is
with the "pseudo-variable" "self® which is used
by an object to send messages to itself. When a
message is sent to an object, "self” is set to the
object to which the message is sent. The
dynamic binding of messages sent to "self”
allows a class to call on methods that are really
defined in a subclass.

Unlike Smalltalk, Ada is a strongly typed
language. This means that all variables and
parameters must be declared to be of a single
specific type. This allows an Ada compiler to
check statically that only values of the correct
type are being assigned to variables and used as
arguments. The Ada compiler can also always
determine exactly what operation from what
package (if any) is being invoked by a given
call. Operation calls are thus statically bound to
the proper operation. Undefined operation calls
are always discovered at compile-time.

A way around this involves the use of generics.
In addition to their role in creating classes of
packages, generics also allow a package to be
parameterized with type and subprogram
parameters. This feature can be used to declare
a package which can use any class with certain
needed operations. Generic facilities can also
be used to allow a class to defer the
implementation of some operations to
subclasses.

Example 3 -- Sdample Space
The class SampleSpace represents random
selection without replacement from a collection
of items. It has the following protocol:
ample e class protocol
instance creation
Create an instance such

that aCollection is the
sample space.

data: aCollection

4-39

5207

accessing
next Answer the next element

chosen at random from
the sample space,
removing it from the
space.

Answer an ordered
collection of anlnteger
number of selections
from the sample space.

next: anlnteger

testing

isEmpty Answer whether any
items remain to be
sampled.

size Answer the number of
items remaining to be
sampled.

This protocol does not specify exactly what
kind of collection must be used for the sample
space. The class definition is:

class name SampleSpace
superclass Object
instance variable names data

: rand

class methods
instance creation

data: aCollection
~super new setData: aCollection.

instance methods
accessing

next
| item |
self isEmpty if True:
[self error 'no values exist in the sample space’].
item <- data at:
(rand next * data size) truncated + 1.
data remove: item.
~item

5207

next: anlateger
| aCollection |
aCollection - f e _
<- OrderedCollection new: anlnteger.
anlnteger timesRepeat:
[aCollection addLast: seif next].

~aCollection

testing

isEmpty
~self size = 0

size
~data size

private -
setData: aCollection
data <- aCollection.
rand <- Random new

Note that local variables in methods are listed
between vertical bars at the beginning of the
method. Also, the definition of SampleSapce
uses an instance of the Smalltalk system class
Random to generate random numbers. In_the
methods for "next" and "size", SampleSpace
sends the messages "at", "size" and "remove:" to
the instance variable "data” which holds the
collection of sample space items. This means
that any object which can respond to "at:", "size”
and "remove:" can serve as the collection. This
object could be an instance of a Smalltalk
system class such as Array, or it could be an
instance of a user-defined class. An example of
the use of SampleSpace id shuffling a deck of
cards:

class name CardDeck
" superclass) Object
instance variable names cards

shuffle

| sample | o came

sample <- SampleSpace data: cards.

cards <- sample next: cards size
An Ada generic Sample_Space package needs a
COLLECTION type and At, Size and Remove

| I/ [PIR (R

i

|

| Il

&t own G

WiEI

operations. A specification for this package is:

generic

type COLLECTION_TYPE is private;
type ELEMENT_TYPE Is private;

with function At
(Collection : COLLECTION_TYPE;
Index : POSITIVE)
return ELEMENT_TYPE,
with function Size
(Collection : COLLECTION TYPE)
return ELEMENT_TYPE;
with procedure Remove
(Collection : in out COLLECTION_TYPE;
Element :in ELEMENT_TYPE);

package Sample_ Space is
Empty : exception;

type ELEMENT_LIST is
array (NATURAL range <>)
of ELEMENT_TYPE;

-- Initialization

procedure Set
(Data : in COLLECTION_TYPE);

-- Accessing

function Next return ELEMENT_TYPE,

function Next (Number : NATURAL)
return ELEMENT_LIST;

-- Testing
function Is__Empty return BOOLEAN,;
function Size return NATURAL,;

end Sample__Space;

Package Sample_Space uses the generic facility
both to parameterize itself and to allow a class
of objects (as discussed in Section 2). It would
also have been possible to define a generic
Sample _Space_Handler package with a
SAMPLE_SPACE type. This would have
allowed sample spaces to be passed as data, an
ability which is not really needed for the
present example.

The body of Sample_ Space is:

5207

with Random;
package body Sample_ Space is

-- Instance variable
Sample_Data : COLLECTION_TYPE;

-~ Initialization
procedure Set

(Data : COLLECTION_TYPE) is
begin

Sample_Data := Data;
end Set;
-- Accessing

function Next return ELEMENT_TYPE is
Item : ELEMENT_TYPE;
begin
if Is_Empty then
raise Empty;
end if;
Item := At (Sample_Data, Index =>
NATURAL((Random.Value*Size)+1));
Remove
(Collection
Element
return Item;
end Next;

=> Sample_ Data,
=> [tem);

function Next (Number : NATURAL)
return ELEMENT_LIST is
List : ELEMENT_LIST(1 ..
begin
for I'in I .. Number loop
List(I) := Next;
end loop;
return List; .
end Next; |

Number);

-~ Testing
function Is_Empty return BOOLEAN is
begin
return (Size = 0);
end Is__Empty;

function Size return NATURAL is
begin

return Size(Sample _Data);
end Size;

end Sample_Space;
The Sample_Space package body assumes the

availability of a package Random to generate
random numbers. Sample_Space could then be

used to shuffle an instance of private type
CARD_DECK:

with Sample_ Space;
package body Card_ Deck_ Handler is

package Sample is new Sample_ Space
(COLLECTION_TYPE => CARD_DECK,
ELEMENT_TYPE => CARD_TYPE,

At => Card,
Size => Deck_ Size,
Remove => Remove_Card);

procedure Shuffle
(Cards : in out CARD_DECK) is
begin
Sample.Set (Data => Cards);
Cards := CARD_DECK
(Sample.Next(Deck_Size(Cards)));
end Shuffle;

end Card_ Deck_ Handler;

Generic package Sample _Space is a template
for a general class of sample spaces. Since a
COLLECTION_TYPE must be specified when
Sample_Space is instantiated, each instance of
this class can only handle a single type of
collection for sampling. Thus an Ada compiler
can still perform static type checking for each
instantiation of generic packages.

The dynamic binding and lack of typing in
Smalitalk allow an instance of a subclass to be
used anyplace an instance of its superclass may
be used. As mentioned at the end of Section 3
the Ada type system does not allow this because
it views all private types as distinct and
incompatible, The above generic technique can
help with this problem, also. A generic package
(or other program unit) which is parameterized
by the types and operations it needs will be able
to use any type with the necessary operations.
Thus if the private type representing some class
can be plugged into a generic, then a subclass
type can also be plugged into that same generic.
However, the generic must be instantiated
separately for each type. There is no easy way

5207

in Ada have a true polymorphic procedure, that
is, a single procedure with an argument which
accepts values of different types.

§. Conclusion

Smalltalk and Ada are based on quite different
ph:losophxes Smalltalk is desxgned to make it
easier to program and to incrementally build
and modify systems. Ada, on the other hand,
purposefully places certain additional
obligations on the programmer so that the final
system will be more reliable and more
maintainable. The Ada philosophy takes a
much more life-cycle-oriented approach,
recognizing that most costly phase of software
development is maintenance, not coding.

If the languages have such different bases, then
why consider using object-oriented ideas for
Ada? The answer is that object-oriented
concepts really apply to more than just
programming. In Ada circles, these concepts
are usually applied to design [Booch 83,
Seidewitz 86a, Seidewitz 86b]. The object-
oriented viewpoint is crucial to designing for
effect use of Ada’s package facility. Further,
the object-oriented approach can be a general
way of thinking about software systems which
can be applied from system specification
through testing. This fits in quite well with the

Ada life-cycle philosophy [Booch 86, Stark 87]. -

Still, Ada has some unfortunate drawbacks for
object-oriented programming, especially in its
lack of support for inheritance. As an object-
oriented programming lan.guage Smalltalk is in
many ways clearly superior to Ada. However,
as a life-cycle software engineering language
Ada has great advantages. ~ Static strong typing
is crucial to increasing the reliability of
software. Even with a good testing
methodology, large amounts of code will not be
thoroughly tested because it is only executed in
rare combinations of situations. But when a
system is running continuously for years, any
errors that remain in these sections of code will
almost certainly occur. This is especially true
for the embedded real-time systems which were
Ada’s original mandate. In Ada, all sections of
code are checked by the compiler, and many
errors can be caught before the testing phase
due to static type checking and static operation
binding.

4-42

N Bl (B |

ain: 40

|

(|

H

[

It is possible to support inheritance and even
polymorphism within a statically typed language
(as in, for example, Eiffel [Meyer 86, Meyer
87)). Inheritance might be added to Ada
without too much change to the design of the
language. Incorporation of polymorphism
would be much more difficult, and probably
require a philosophical change in the Ada
language design. However, even with these
deficiencies for object-oriented programming,
Ada still provides a useful vehicle for applying
object-oriented concepts throughout the
software development life-cycle.

Much of the above discussion also applies to
other modular languages such as Modula-2
(though Modula-2 does not directly support
genericity). As these languages become more
and more widely used it will be increasingly
important to apply to them the experience in
object-oriented software development gained
from Smalltalk and other object-oriented
languages.

References
[(Booch 83]
Grady Booch. Software Engineering with Ada,

Benjamin/Cummings, 1983.

[Booch 86]

Grady Booch. "Object-Oriented Development,”
E ransaction frw ngineering,

February 1986.

[Dahl 68]

O-J Dahl. Simula 67 mmon B nguage,

Norwegian Computing Center, Oslo, Norway,
1968.

(DOD 83]
US Department of Defense, Reference Manual

for the Ada Programming lLanguage,
ANSI/MIL-STD-1815A-1983.

[Goldberg 83]
Adele Goldberg and David Robson. Smalltalk-

80: The Language and its Implementation,
Addison-Wesley, 1983.

5207

[Meyer 86]

Bertrand Meyer. "Genericity versus

Inheritance,” LA ' nferen
Proceedings, SIGPLAN Notices, November
1986. .
[Meyer 87)

Bertrand Meyer. "Eiffel: Programming for
Reusability and Extendability," SIGPLAN
Notices, February 1987,

[Seidewitz 86a]
Ed Seidewitz and Mike Stark. "Towards an
Object-Oriented Software Development

Methodology,"” Pr he_lst Intl nf
Ada Applications for the Spac Station, June
1986.

[Seidewitz 86b]

Ed Seidewitz and Mike Stark. General Object-
rien ftware Devel nt, Goddard

Space Flight Center, SEL-86-002, August 1986.

[Snyder 86]
Alan Snyder. "Encapsulation and Inheritance in
Object-Oriented Programming Languages,”

PSLA ° nferen r ings,
SIGPLAN Notices, November 1986.
[Stark 87]

Mike Stark and Ed Seidewitz. "Towards a
General Object-Oriented Ada Life-Cycle,"

Proc. _of the Joint 4th Washington Ada

m ium Fifth nf n_A
Technology, March 1987,
[Wirth 83]

| .
Niklaus Wirth. Programming in Modula-2,
Springer-Verlag, 1983.

‘

L 110

=
-

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

I .

1
i

1
!

{

ﬁm il

TANDARD BIBLIQOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

EL-QRIGINAT N

SEL-76-001, Proceedings From the First Summer Software Engi-
neering Workshop, August 1976

SEL-77-002, Pr in From th
gineering Workshop, September 1977
SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton

and S. Zeldin, September 1977

SEL-77-005, GSFC NAVPA ,
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-005, ings m th i mmer ftware Engi-
neering Workshop, September 1978

SEL-78-006, F ftw Engineering R ar Requiremen
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978
SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program

(SAP) User's Guide (Revision 3), W. J. Decker and

W. A. Taylor, July 1986

SEL-79-002, The Software Engineering Laboratory: Relation
ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, mm ftware M le Repositor CSMR
Description and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979
SEL-79-004, Evaluation of thg Caine, Farber, and Gordon Pro-
gram Design Langquage (PDL) in the Goddard Space Flight Cen-
SF Softwar ign Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

B-1
9913

SEL-79-005, Proceedings From the Fourth Summer Software En-
gineering Workshop, November 1979

SEL 80- 002, Multi-Level [

ion ign
irement Level (MEDL-R) System Evaluation, W. J. Decker

and C. E. Goorevich, May 1980

SEL-80-003, ltimission Modular raf roun r
/

Compatibility Study, T. Welden, M. McClellan,'and
P. Liebertz, May 1980

SEL-80-005, A _Study of the Muga Rel;gb ity Model
A. M. Mlller, November 1980

SEL-80-006, PG From the Fi h;Agn,rl £ wéf Engi-
neering Wgrkshgg November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-

tion Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

SEL- 81 008, i

User's Guide, J. F. Cook and E. Edwards, February 1981
SEL-81-009, ,7;ﬂw r ineering Labora Programmer Work-
bench Phase 1 Eva ggtlgn, W. J. Decker and F. E. McGarry,
March 1981 -

SEL-81-011, Evaluating Software Development by Analysis of
"ghgnge gta D. M Welss,:November 1981

SEL- 81- 012 Th_ Ra leigh

Picasso, December 1981 ;5 e

SEL-81-013, Proceed1nqs From the Slxth Annual Software Enq1—
neering Wgrkshgg pecember 1981

SEL- 81 014, A

SEL-81-101, gu'de ;g Data lelegglgn, V. E. Church,
D. N. Card, F E McGarry, et al., Augqust 1982

_ S
A. L. Green, W J Decker, and F E McGarry, September 1981

SEL-81- 102 Sthwa re Englnee ng Labgratorzﬁfs) Data Base
Q ganiz atlgn a Qﬁgag; S gu;dg Revision P Lo and

9913

g vl

au

1
1

QI QW .

&b

il

T

Il

(Rl

T

i

S

L il

[

SEL-81-104, Th ftware Engineering L ratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

SEL-81-106, Softwar ngin ing Labor r EL) D men
Librar DOCLIB mD ription an r' ide,
W. Taylor and W. J. Decker, May 1985

SEL-81-107, Software Engineering Laboratory (SEL) Com
of Tools, W. J. Decker, W. A, Taylor, and E. J. Smith,
February 1982

SEL-81-110, Eval ion n In endent Verifi i n
Validati IV&V) Meth 1 for Flight Dynamics, G. Page,
F. E. McGarry, and D. N. Card, June 1985

SEL-81-203, Software Engineering Laboratory (SEL) Data Base

aintenan m AM r' i and S m D rip-
tion, P. Lo, June 1984

SEL-81-205, mmen Approach to ftware Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Eval ion Managem M r ftwar
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2)

SEL-82-003, Software Engineerin rator EL) Data Ba
i £ ' i Descripti

s wal
P. Lo, August 1983

SEL-82-004, 11 ftwar ngineering Papers: Vol-
ume 1, July 1982

SEL-82-007, Proceedings From the Seventh Annual Software
Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of

han : he Data h ftwar ngineering Labor Ty,
V. R. Basili and D. M. Weiss, December 1982
SEL-82-102, FORTRAN Static Source Code Analyzer Program

AP ipti Revision 1), W. A, Taylor and

W. J. Decker, April 1985
SEL-82-105, r ftwar

Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

9913

SEL 82-606, Ann e , i
Laboratory Literature, S. Stelnberg, November 1988

SEL-83-001, An Approach ftwar Estimation,
F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,
D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, 11 ftware Engineering Papers: Vol-
um QWII Novemher 1983

SEL 83 006
Variables, C. W. Doerfllnger, November 1983 .

SEL-83-007, Proceedings From the Eighth Annual Software En-
gineering Workshop, November 1983

SEL-84-001, Manager's Hgnggggk fgr Software Qevelggmgn;,
W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-002, Confiquration Management an ntrol;
and Procedures, Q. L. Jordan and E. Edwards, December 1984

SEL-84-003, Investigation of Specification Measures for the

Software Engineering Laboratory (SEL), W. W. Agresti,

V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Prgégédihgs From theqﬂigih Annual Software Engi-
neering Workshop, November 1984

SEL-85-001, A] ftware Verification T
niques, D. N. Card R. W Selby, Jr., F. E. McGarry, et.al.,
April 1985

SEL-85-002, ! Ev 11 N _ R
he Gamma Ra Obs LV Ada Devel nt Team, R. Murphy
and M. Stark, October 1985 . L

SEL—85—003 ggllgg;gg §gf§warg Englngg ng Papers, Vol
ume III, November 1385

SEL-85-004, Evaluations of Software nghhglggigs; Testing,
QLEANRQQM. and g;rlgg R W Selby, Jr., May 1985

D.VN. Card,

SEL-85-005, [Lw
C. Antle, and E. Edwards, December 1985

SEL-85-006, Proceedings From the Tenth Annual Software Engi-
neering Workshop, December 1985

B-4
9913

o i s

|l

il

(1

Wi

Wi W L Wl ail

ii

il

{

SEL-86-001, Programmer's Hand k for ight Dynamics
ware Development, R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development,
E. Seidewitz and M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development En-
vironment Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Vol-
ume IV, November 1986

SEL-86-005, Measuring Software Design, D. N. Card, October
1986

SEL-86-006, Pr ings From the Eleven nn ftwar
Engineering Workshop, December 1986
SEL-87-001, Pr t A n i nd P edur for

Fliqght Dynamics Software ngglopmgnt S. Perry et al., March
1987

SEL-87-002, Ada Style Guide (Version 1.1), E. Seidewitz
et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specifica-

tion Model (CSM), W. W. Agresti, June 1987

SEL-87-004, _Impli-

cations: A Case Stg Y, S. Godfrey, C. Brophy, et al.,

July 1987

SEL-87-005, ight Dynami nalysi tem (FDA Buil

User's Qu'dg S. Chang et al., October 1987

SEL-87-006, Flight Dynami lysi m (FDA Buil

System Description, S. Chang, October 1987

SEL 87-007, Application Software Under the Eligh; Dynamics
Analysis System (FDAS) Build 3, S. Chang et al., October 1987

SEL-87-008, Data Collection Procedures for the Rehosted SEL

Database, G. Heller, October 1987

SEL-87-009, 11 ftwar ngineering P rs; Volume V,

S. DeLong, November 1987

SEL-87-010, Proceedings From the Twelfth Annual Software En-

gineering Workshop, December 1987

9913

SEL-88-001, mT ing of a Production A Project: Th

GRODY Study, J. Seigle and Y. Shi, November 1988
SEL-88-002, 11 ftwar nginee

ume VI, November 1988
SEL-RELATED LITERATURE

Agresti, W. W., Definition of Specification Measures for the
Software Engineering Laboratory, Computer Sciences Corpora-
tion, CSC/TM-84/6085, June 1984 B

4agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,
"Designing W1th Ada for Satelllte Slmulatlon' A Case Study,"

din ymposi
the NASA Sgagg S;atlgn, "June 1986 T
2Agrestl, W. W., F. E. McGarry, D. N. Card, et al., "Meas-
uring Software Technology," Program Transformation gnd Pro-

gramming Environments. New York: Springer-Verlag, 1984
lpailey, J. W., and V. R. Basili, "A Meta-Model for Soft-

ware Development Resource Expendltureé;W7Pr in £ th
rnational nf ftware Engineering.

New York: IEEE Computer Soc1ety Press,_l 81

1Ba5111, V. R., "Models and Metrics for Software Manage-

ment and Englneerlng," SME, Advan r Techn 1
January 1980, vol B

Basili, V. R.,

. s and M i
Management and Engineering. New York: IEEE Computer Society
Press, 1980 (also designated SEL-80-008)"7— °

3Ba5111, V. R., "Quantltatlve Evaluatlon of Software Meth-
odology,"”
ference, September 1985

1Ba5111, V. R., and J. Beane, "Can the Parr,Curve Help

With Manpower ‘Distribution and Resource Estimation Prob-

lems?," Journal Qf Systems and §gftwgre, February 1981,

vol. 2, no. 1

lpasili, V. R., and K. Freburger, “Programming Measurement
and Estimation in the Software Engineering Laboratory,"

Journal of Systems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-
sh1ps Between Effort and Other Variables in the SEL,"
rnational Computer Software and Ap-

gllggtigng Qggferenge, October 1985

B-6
9913

gl i = % € Eil & I

&l

(s

==
[_J

1l

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction

and Reliability Assessment in the SEL Environment, University
of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and
Complexity: An Empirical Investigation," Communications of
the ACM, January 1984, vol. 27, no. 1

lgasili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
in he ACM ST I osium/Workshop: al-

ity Metrics, March 1981

3Bpasili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto-
type Expert System for Software Engineering Management,"
Pr ings h EE/MITRE Exper ms_in vernmen

Symposium, October 1985

Basili, V. R., and R. Reiter, “Evaluating Automatable Meas-

ures for Software Development," Proceedings of the Workshop

n nti iv ftware M ls f Reliabilit mplexi

.and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. and H. D. Rombach, "Tailoring the Software
Process to Project Goals and Environments,” Proceedings of
the 9th International Conference on Software Engineering,
March 1987

5Basili, V. and H. D. Rombach, "T A M E: Tailoring an Ada

Measurement Environment," Proceéedings of the Joint Ada Con-
ference, March 1987

5Basili, V. and H. D. Rombach, "T A M E: Integrating Meas-
urement Into Software Environments," University of Maryland,
Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, “The TAME Project:
Towards Improvement-Oriented Software Environments," IEEE

Transactions on Software Engineering, June 1988

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Anal-
ysis and Data Validation Across FORTRAN Projects," IEEE
Transactions on Software Engineering, November 1983

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use
of an Environments's Characteristic Software Metric Set,"

P in h ighth ional nferen n -
ware Engineering. New York: IEEE Computer Society Press,
1985

B-7

9913

Basili, V. R., and R. W. Selby, Jr., Comparing the Effective-

ness of Software Testing Strateqies, University of Maryland,
Technical Report TR-1501, May 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Ex-

perimentation in Software Engineering," Tran ion n
Software E,gi eering, July 1986

5Basili, V. and R. Selby, "Comparing the Effectiveness of
Software Testing Strategies,” E Tran ion n ftwar
Engineering (in press) :

2Basili, V. R., and D. M. Weiss, A Methodol £ in
Valj ftware Engineering D Universit

nical Report TR-1235, December 1982 o=

3Basili, V. R., and D. M. Weiss, "A Methodology for Collect-
ing valid Software Engineering Data," IEEE Transaction n
Software Engineering, November 1984 : :) '

lgasili, V. R., and M. V. Zelkowitz, "The Software Engi-
neering Laboratory: Objectives,” Pr in f the Fif-

nth 1 nferen n Comg r rsonnel R rch,
August 1977

Basili, V. R., and M V. Zelkow1tz, *Designing a Software
Measurement Experiment," Pr n h war if

Czclg Managemgnt wQ;ksth September 1977

1Bas111, V. 7R., and M. V. Zelkow1tz, "Operat1on of the ‘Soft-
ware Engineering Laboratory," Proceedin f th ft-
Life le Management Workshop, August 1978

lgasili, V. R., and M; V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment," Com-

puters and Structures, August 1978, vol. 10

Basili, V. R., and M. V., Ze1k0w1tz, "Analyz1ng Medlum Scale
Software Development, h

tional Conference onrsoftware Engineering. New York IEEE
Computer Soc1ety Press, 1978

5Brophy, C., W. 'Agrestl, and V Ba5111, “Lessons Learned

in Use of Ada-Oriented Design Methods,"” Progeeglngs of the
lent Ada Con: grengg March 1987 -e 5frwm :

6Brophy, c. E., S. Godfrey, W. W. Agrest1, and V. R. Basili,
"Lessons Learned 1n the Implementatlon Phase of a Large Ada
Project,” Proc (
ference, March 1988

9913

1 L (

i

&l
I

sl

v

m

&0

=
E H

i

|

l!

] 3card, D. N., "A Software Technology Evaluation Program,"
Annais do XVIII Congresso Nacional de Informatica, October
1985 ‘

5card, D. and W. Agresti, "Resolving the Software Science
Anomaly," Th rnal of ms_an ftware, 1987

6card, D. N., and W. Agresti, "Measuring Software Design

Complexity," The Journal of Systems and Software, June 1988

4card, D., N., V. E. Church, and W. W. Agresti, "An Em-
pirical Study of Software Design Practices,” IEEE Trans-
i ftware Engineering, February 1986

5card, D., F. McGarry, and G. Page, "Evaluating Software
Engineering Technologies," IEEE Transactions on Software
Engineering, July 1987

3card, D. N., G. T. Page, and F. E. McGarry, "Criteria for
Software Modularization,"” in f the Eighth Interna-

ional nferen ftware Enqgineering. New York: IEEE
Computer Society Press, 1985

lchen, E., and M. V. Zelkowitz, "Use of Cluster Analysis
To Evaluate Software Engineering Methodologies," Proceed-
ings of the Fifth International Conference on Software
Engineering. New York: IEEE Computer Society Press, 1981

4Cchurch, V. E., D. N. Card, W. W. Agresti, and
Q. L. Jordan, "An Approach for Assessing Software Proto-

types," ACM Software Engineering Notes, July 1986

2poerflinger, C. W., and V. R. Basili, "Monitoring Software
Development Through Dynamic Variables," Proceedings of the

venth International Com r ftware and Appli ion
Conference. New York: IEEE Computer Society Press, 1983

Spoubleday, D., “"ASAP: An Ada Static Source Code Analyzer
Program,” University of Maryland, Technical Report TR-1895,
August 1987 (NOTE: 100 pages long)

6Godfrey, S. and C. Brophy, "Experiences in the Implementa-

tion of a Large Ada Project," in he 1
Washington Ada Symposium, June 19588
Hamilton, M., and S. Zeldin, A _Demon i f ES f

NAVPAK, Higher Order Software, Inc., TR-9, September 1977
(also designated SEL-77-005)

Jeffery, D. R., and V. Basili, "Characterizing Resource
Data: A Model for Logical Association of Software Data,"
University of Maryland, Technical Report TR-1848, May 1987

B-9
9913

6Jeffery, D. R., and V. R. Basili, "Validating the TAME

Resource Data Model,"” Proceedings of the Tenth International
Conferen n ftware Engineering, April 1988

SMark, L. and H. D. Rombach, "A Meta Information Base for
Software Engineering," University of Maryland, Technical
Report TR-1765, July 1987

éMark, L. and H. D. Rombach, "Generating Customized Soft-
ware Engineering Information Bases from Software Process and
Product Spec1f1cat1ons,jﬁ

SMcGarry, F. and W. Agrestlhr“Measurlng Ada for Software

Development in the Software Engineerlng Laboratory (SEL),
Proceedin he 2 Annual Hawai rnational n-—

ference on §X§t§ §g e ges January 1988

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the
Impact of Computer Resource Qua11ty on the Software Develop—

ment Process and Product,"” edings of the Hawaijiap r-
national Conference on st;e Sciences, January 1985

3page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-
perience With Independent Verification and Validation,"

Proceedin he Eighth rnational Compu ftwar
and,Apgl1gat;g s Qggfergnge November 1984

5Ramsey, C. and v. R Ba5111,?”An Evaluatlon of Expert Sys—
tems for Software Engineering Management,® University of
Maryland, Techn1ca1 Report TR 1708, September 1986

3Ramsey, J., and V. R. B35111, "Ana1y21ng the Test Process
Using Structural Coverage," Proceedings of the Eigqhth Inter-

national Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

5Rombach H. D., "A Controlled Experlment on the Impact of

Software Structure on Maintainability," IEEE Transactions on
Software Engineering, March 1987

6Rombach H D R and V R Ba5111;;”Quant1tat1ve Assessment
of Maintenance: An Industrial Case Study.," Proceedings from
the ggnferenge on ngtwgre Ma1ntenange September 1987

6Rombach H. D ,:and L Mark "Software Process and Prod-
uct Specifications: A Basis for Generating Customized SE

Informatlon Bases,” Proceedings of thg 22nd Annual Hawaii
January 1989

9913

Wi |

I

Sk |

LIl

mii

Rl

WG

g

I

5seidewitz, E., "General Object-Oriented Software Develop-
ment: Background and Experience," Pr Qggeglngg of the 21st

Hawaii International Conference on System Sciences, January
1988

6seidewitz, E., "General Object-Oriented Software Develop-
ment with Ada: A Life Cycle Approach," in £ th
CASE Technology Conference, April 1988

6seidewitz, E., "Object-Oriented Programming in Smalltalk
and Ada," Proceedings of the 1987 Conference on Object-
Oriented Programming Systems, Lanquages, and Applications,
October 1987 ’

4seidewitz, E., and M. Stark, "Towards a General Object-

" Oriented Software Development Methodology," Proceedings of
the First International Symposium on Ada for the NASA Space
Station, June 1986

Stark, M., and E. Seidewitz, "Towards a General Object-
Oriented Ada Lifecycle," Px in f the Joint Ada n-
ference, March 1987

Turner, C., and G. Caron, mparison of RAD nd NASA/SEL

Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981 '

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

S5valett, J. and F. McGarry, "A Summary of Software Measure-
ment Experiences in the Software Engineering Laboratory,"”
r in h 1st Annual Hawaii International nfer—

ence on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software De-
velopment by Analysis of Changes: Some Data From the Soft-
ware Engineering Laboratory," IEEE Transactions on Software
Engineering, February 1985

5WU, L., V. Basili, and K. Reed, "A Structure Coverage Tool
for Ada Software Systems,“ r in f th int A n-

ference, March 1987

lzelkowitz, M. V., "Resource Estimation for Medium Scale
Software Pro:ects,“ Proceedings of the Twelfth Conference on

h rf isti n m r ience. New York:
IEEE Computer Society Press, 1979

9913

2zelkowitz, M. V., “Data Collection and Evaluation for Ex-
per1menta1 Computer Science Research," Empirical Foundation

for Computer and Information Science (proceedings),
November 1982

6zelkowitz, M. V., "The Effectiveness of Software Proto-

typlng A Case Study," Proceedings of the 26th Annual Tech-

1l S ium of the Washington, D ha r of the ACM,

June 1987

6zelkowitz, M. V., "Resource Utilization During Software
Development,” Journal of Systems an ftware, 1988

Zelkowitz, M. V., and V. R. Basili, "Operatlonal Aspects of
a Software Measurement Facility," Pro in f_th ft-

ware Life Cycle Management Workshop, September 1977

NOTES:

IThis article also appears in SEL-82-004, Collected Soft-
ware Engineering Papers: Vglgmg July 1982

2This article also appears in SEL-83-003, lelgg;gd 59 t
ware Eng;neerlng Paper §, Vglgmg I1I, November 1983.

3This article also appears in SEL-85-003, Collected Soft-
ware Engineering Papers; Volume III, November 1985.

4This article also appears in SEL-86-004, Collected Soft-

are Engineering P Volume IV, November 1986.

S3This article also appears in SEL-87-009, gg;_ggtgd_sgﬁt_f
ware Endineering Papers: Volume V, November 1987.- SR

5Thls article also appears in SEL-88-002, Collected Soft-
Engineerin] Volume VI, November 1988.

9913

al wiii

Wiy

]

il

1 q (. |

